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Prolog:  

Programming in Logic 

with some mention of Datalog and 

Constraint Logic Programming 
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The original declarative programming language 

 Courses in programming languages … 

 Prolog is always the declarative language they teach. 

 (imperative, functional, object-oriented, declarative) 

 

 Alain Colmeraeur & Philippe Roussel, 1971-1973 
 With help from theorem proving folks such as Robert Kowalski 

 Original project: Type in French statements & questions 

 Computer needed NLP and deductive reasoning 

 Efficiency by David Warren, 1977 (compiler, virtual machine) 

 Colmerauer & Roussel wrote 20 years later: 
“Prolog is so simple that one has the sense that sooner or 
later someone had to discover it … that period of our lives 
remains one of the happiest in our memories. 

 “We have had the pleasure of recalling it for this paper over 
almonds accompanied by a dry martini.” 
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Prolog vs. ECLiPSe 

 Most common free Prolog implementation is SWI Prolog.  

 Very nice, though faster ones are for sale (e.g., SICSTUS Prolog). 

 To run Prolog, you can just run ECLiPSe! 

 ECLiPSe  is a perfectly good Prolog implementation,  

although so far we’ve concentrated only on its “extra” features. 
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Prolog vs. ECLiPSe 

Constraint 

programming 

Logic programming 

(e.g., Prolog) 

Constraint logic 

programming  

(e.g., ECLiPSe) 

Efficient: 

Variable ordering 

Value ordering 

Constraint joining and 

propagation 

 

But:  

Encoding is annoying 

Variables limited to 

finite sets, ints, reals 

Expressive: 

Subroutines 

Recursion 

Variable domains are 

“terms” (including lists 

and trees) 

But: 

Simple, standard 

solver: backtracking 

and unification 

Combo: 

Tries to combine best 

of both worlds 

Later on we’ll see how 
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Prolog as constraint programming 

 The above shows an ordinary constraint between two variables: 
Person and Food 

 Prolog makes you name this constraint.   
Here’s a program that defines it: 
 eats(sam, dal).  eats(josie, samosas). 

 eats(sam, curry).  eats(josie, curry). 

 eats(rajiv, burgers).  eats(rajiv, dal).  … 

 Now it acts like a subroutine!  At the Prolog prompt you can type  
 eats(Person1, Food1).   % constraint over two variables 

 eats(Person2, Food2).   % constraint over two other variables 

(Person, Food) 

Person Food 

sam dal 

sam curry 

josie samosas 

josie curry 

rajiv burgers 

rajiv dal 
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Simple constraints in Prolog 

 Here’s a program defining the “eats” constraint: 
 eats(sam, dal).  eats(josie, samosas). 

 eats(sam, curry).  eats(josie, curry). 

 eats(rajiv, burgers). eats(rajiv, dal). … 

 Now at the Prolog prompt you can type  

 eats(Person1, Food1).   % constraint over two variables 

 eats(Person2, Food2).   % constraint over two other variables 

 

 To say that Person1 and Person2 must eat a common 
food, conjoin two constraints with a comma: 

 eats(Person1, Food), eats(Person2, Food). 

 Prolog gives you possible solutions: 

 Person1=sam, Person2=josie, Food=curry 

 Person1=josie, Person2=sam, Food=curry   … 

Actually, it will 
start with 
solutions where 
Person1=sam, 
Person2=sam. 
How to fix? 
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 eats(sam, dal).  eats(josie, samosas). 

 eats(sam, curry).  eats(josie, curry). 

 eats(rajiv, burgers). eats(rajiv, dal). … 

 

 

 

 

 
 

 eats(Person1, Food), eats(Person2, Food). 

 

 Person1=sam, Person2=josie, Food=curry 

 Person1=josie, Person2=sam, Food=curry   … 

Your program file (compiled) 
Sometimes called the “database” 

“Query” that you type interactively 

Prolog’s answer 
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Simple constraints in Prolog 

 Here’s a program defining the “eats” constraint: 
 eats(sam, dal).  eats(josie, samosas). 

 eats(sam, curry).  eats(josie, curry). 

 eats(rajiv, burgers). eats(rajiv, dal). … 

 Now at the Prolog prompt you can type  

 eats(Person1, Food1).   % constraint over two variables 

 eats(Person2, Food2).   % constraint over two other variables 

 

 To say that Person1 and Person2 must eat a common 
food, conjoin two constraints with a comma: 

 eats(Person1, Food), eats(Person2, Food). 

 Prolog gives you possible solutions: 

 Person1=sam, Person2=josie, Food=curry 

 Person1=josie, Person2=sam, Food=curry   … 

Actually, it will 
start with 
solutions where 
Person1=sam, 
Person2=sam. 
How to fix? 
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Queries in Prolog 

 eats(Person1, Food1).   % constraint over two variables 

 eats(Person2, Food2).   % constraint over two other variables 

 

 eats(Person1, Food), eats(Person2, Food). 

 Prolog gives you possible solutions: 

 Person1=sam, Person2=josie, Food=curry     

 Person1=josie, Person2=sam, Food=curry   … 

These things you type at the prompt are called “queries.” 
 Prolog answers a query as “Yes” or “No”  

according to whether it can find a satisfying assignment.   
 If it finds an assignment, it prints the first one before printing “Yes.” 
 You can press Enter to accept it, in which case you’re done,  

or “;” to reject it, causing Prolog to backtrack and look for another. 

[ press “;” ] 



10 

Constants vs. Variables 

 Here’s a program defining the “eats” constraint: 

 eats(sam, dal).  eats(josie, samosas). 

 eats(sam, curry).  eats(josie, curry). 

 eats(rajiv, burgers). … 

 Now at the Prolog prompt you can type  

 eats(Person1, Food1).   % constraint over two variables 

 eats(Person2, Food2).   % constraint over two other variables 

 

 Nothing stops you from putting constants into constraints: 

 eats(josie, Food). % what Food does Josie eat?  (2 answers) 

 eats(Person, curry). % what Person eats curry?  (2 answers) 

 eats(josie, Food), eats(Person, Food). % who’ll share what with Josie? 

 Food=curry, Person=sam 
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Constants vs. Variables 

 Nothing stops you from putting constants into constraints: 

 eats(josie, Food). % what Food does Josie eat?  (2 answers) 

 eats(Person, curry). % what Person eats curry?  (2 answers) 

 eats(josie, Food), eats(Person, Food). % who’ll share what with Josie? 

 Food=curry, Person=sam 

 Variables start with A,B,…Z or underscore: 

 Food, Person, Person2, _G123 

 Constant “atoms” start with a,b,…z or appear in single quotes: 

 josie, curry, ’CS325’ 

 Other kinds of constants besides atoms: 

 Integers -7, real numbers 3.14159, the empty list [] 

 eats(josie,curry) is technically a constant structure 
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Rules in Prolog 

 Let’s augment our program with a new constraint: 

eats(sam, dal).  eats(josie, samosas). 

eats(sam, curry).  eats(josie, curry). 

eats(rajiv, burgers).  eats(rajiv, dal). 

compatible(Person1, Person2) :- eats(Person1, Food),   

               eats(Person2, Food). 

 

 

 “Person1 and Person2 are compatible if there exists some Food that 

they both eat.” 

 “One way to satisfy the head of this rule is to satisfy the body.” 

 You type the query: compatible(rajiv, X).  Prolog answers: X=sam.  

 Prolog doesn’t report that Person1=rajiv, Person2=sam, Food=dal. 

These act like local variables in the rule.  It already forgot about them. 

means “if” – it’s supposed to look like “” 

head body 
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Rules in Prolog 

 Let’s augment our program with a new constraint: 

eats(sam, dal).  eats(josie, samosas). 

eats(sam, curry).  eats(josie, curry). 

eats(rajiv, burgers).  eats(rajiv, dal). 

compatible(Person1, Person2) :- eats(Person1, Food),   

               eats(Person2, Food). 

compatible(Person1, Person2) :- watches(Person1, Movie), 

              watches(Person2, Movie). 

compatible(hal, Person2) :- female(Person2), rich(Person2). 

 

 “One way to satisfy the head of this rule is to satisfy the body.” 

why only “one way”?  Why not “if and only if”? 
allusion to movie Shallow Hal; 
shows that constants can appear in rules 
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The Prolog solver 

 Prolog’s solver is incredibly simple. 

 eats(sam,X). 

 Iterates in order through the program’s “eats” clauses. 

 First one to match is eats(sam,dal).   

so it returns with X=dal. 

 If you hit semicolon, it backtracks and continues: 

Next match is eats(sam,curry).   

so it returns with X=curry. 
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The Prolog solver 

 Prolog’s solver is incredibly simple. 

 eats(sam,X). 

 eats(sam,X), eats(josie,X). 

 It satisfies 1st constraint with X=dal.  Now X is assigned. 

 Now to satisfy 2nd constraint, it must prove eats(josie,dal).  No! 

 So it backs up to 1st constraint & tries X=curry (sam’s other food). 

 Now it has to prove eats(josie,curry).  Yes! 

 So it is able to return X=curry.  What if you now hit semicolon? 

 eats(sam,X), eats(Companion, X). 

 What happens here? 

 What variable ordering is being used?  Where did it come from? 

 What value ordering is being used?  Where did it come from? 
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The Prolog solver 

 Prolog’s solver is incredibly simple. 

 eats(sam,X). 

 eats(sam,X), eats(josie,X). 

 eats(sam,X), eats(Companion, X). 

 compatible(sam,Companion). 

 This time, first clause that matches is 
compatible(Person1, Person2) :- eats(Person1, Food),   
                 eats(Person2, Food). 

 “Head” of clause matches with Person1=sam, Person2=Companion. 

 So now we need to satisfy “body” of clause: 
eats(sam,Food), eats(Companion,Food). 
Look familiar? 

 We get Companion=rajiv.   
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The Prolog solver 

 Prolog’s solver is incredibly simple. 

 eats(sam,X). 

 eats(sam,X), eats(josie,X). 

 eats(sam,X), eats(Companion, X). 

 compatible(sam,Companion). 

 compatible(sam,Companion), female(Companion). 

 compatible(Person1, Person2) :- eats(Person1, Food),   
                 eats(Person2, Food). 

 Our first try at satisfying 1st constraint is Companion=rajiv (as before).  

 But then 2nd constraint is female(rajiv). which is presumably false. 

 So we backtrack and look for a different satisfying assignment of the 
first constraint: Companion=josie.  

 Now 2nd constraint is female(josie). which is presumably true. 

 We backtracked into this compatible clause (food) & retried it. 

 No need yet to move on to the next compatible clause (movies). 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

 Each constraint has four ports: call, exit, redo, fail 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call exit 

 Each constraint has four ports: call, exit, redo, fail 

 exit ports feed forward into call ports 

 

call exit 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

fail 

 Each constraint has four ports: call, exit, redo, fail 

 exit ports feed forward into call ports 

 fail ports feed back into redo ports 

 

redo fail redo 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

 Each constraint has four ports: call, exit, redo, fail 

 exit ports feed forward into call ports 

 fail ports feed back into redo ports 

backtracking at work 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

no way to satisfy this constraint given 
the assignments so far – so first call fails 

How disappointing.  Let’s try a happier outcome. 



600.325/425 Declarative Methods - J. Eisner 23 

Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

we satisfy this constraint, making additional 
assignments, and move on … 

call 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

we satisfy this constraint, making additional 
assignments, and move on … 
but if our assignments cause later constraints to 
fail, Prolog may come back and redo this one … 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

we satisfy this constraint, making additional 
assignments, and move on … 
but if our assignments cause later constraints to 
fail, Prolog may come back and redo this one … 
let’s say we do find a new way to satisfy it. 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

If the new way still causes later constraints to 
fail, Prolog comes back through the redo port to 
try yet again. 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

If the new way still causes later constraints to 
fail, Prolog comes back through the redo port to 
try yet again. 
If we’re now out of solutions, we fail too … 
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Backtracking and Beads 

 Each Prolog constraint is like a “bead” in a string 

of beads: 

call 

fail 

exit 

redo 

If the new way still causes later constraints to 
fail, Prolog comes back through the redo port to 
try yet again. 
If we’re now out of solutions, we fail too … 
sending Prolog back to redo previous constraint. 

redo 
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Rules as nested beads 

loves(hal, X) :- female(X), rich(X). 

loves(hal, X) 

female(X) rich(X) 
call 

fail 

exit 

redo 

slide thanks to David Matuszek (modified) 

this is why you can backtrack into loves(hal,X) 
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Alternative rules 

loves(hal, X) :- female(X), rich(X). 

loves(Child, X) :- parent(X, Child). 

loves(hal, X) 

female(X) rich(X) 
call exit 

redo 

slide thanks to David Matuszek (modified) 

parent(X, hal) 
exit 

fail redo 

after running out of rich women, hal tries his parents 
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Alternative rules 

female(parvati). 
female(josie). 
female(martha). 

loves(hal, X) 

rich(X) 
call exit 

redo 

slide thanks to David Matuszek (modified) 

parent(X, hal) 
exit 

fail redo 

female(parvati) 

female(josie) 

female(martha) 

female(X) 

female(X) rich(X) 
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 The various eats(…, …) facts can be regarded as rows in a 

database (2-column database in this case). 

 Standard relational database operations: 

• eats(X,dal). % select 

• edible(Object) :- eats(Someone, Object).  % project 

• parent(X,Y) :- mother(X,Y). % union 

parent(X,Y) :- father(X,Y).  

• sister_in_law(X,Z) :- sister(X,Y), married(Y,Z). % join 

 Why the heck does anyone still use SQL?  Beats me. 

 Warning: Prolog’s backtracking strategy can be inefficient. 

 But we can keep the little language illustrated above (“Datalog”) 

and instead compile into optimized query plans, just as for SQL. 

Prolog as a database language 
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Recursive queries 

 Prolog allows recursive queries (SQL doesn’t). 

 Who’s married to their boss? 
 boss(X,Y), married(X,Y).  

 Who’s married to their boss’s boss? 
 boss(X,Y), boss(Y,Z), married(X,Z). 

 Who’s married to their boss’s boss’s boss? 
 Okay, this is getting silly.  Let’s do the general case. 

 Who’s married to someone above them? 
 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 above(X,Y), married(X,Y). 

Base case.  For simplicity, it says that any X is “above” herself. 
If you don’t like that, replace base case with above(X,Y) :- boss(X,Y). 
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Recursive queries 
 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 

 above(c,h).     % should return Yes 

 matches above(X,X)?  no 

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 

boss(b,d).  boss(c,f). 

boss(b,e).   …  
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 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 

 above(c,h).     % should return Yes 

 matches above(X,Y) with X=c, Y=h 

 boss(c,Underling), 

 matches boss(c,f) with Underling=f  

 above(f, h). 

 matches above(X,X)?  no 

 

 

Recursive queries 

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 

boss(b,d).  boss(c,f). 

boss(b,e).   …  
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 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 

 above(c,h).     % should return Yes 

 matches above(X,Y) with X=c, Y=h 

 boss(c,Underling), 

 matches boss(c,f) with Underling=f  

 above(f, h). 

 matches above(X,Y) with X=f, Y=h   

(local copies of X,Y distinct from previous call) 

 boss(f,Underling), 

      matches boss(f,g) with Underling=g  

 above(g, h). 

      …ultimately fails because g has no underlings … 

 

 

 

Recursive queries 

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 

boss(b,d).  boss(c,f). 

boss(b,e).   …  
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 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 

 above(c,h).     % should return Yes 

 matches above(X,Y) with X=c, Y=h 

 boss(c,Underling), 

 matches boss(c,f) with Underling=f  

 above(f, h). 

 matches above(X,Y) with X=f, Y=h   

(local copies of X,Y distinct from previous call) 

 boss(f,Underling), 

      matches boss(f,h) with Underling=h  

 above(h, h). 

      matches above(X,X) with X=h 

 

 

 

Recursive queries 

a 

b c 

d e 

g h 

f 

boss(a,b).  boss(a,c). 

boss(b,d).  boss(c,f). 

boss(b,e).   …  
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Ordering constraints for speed 
 above(X,X). 

 above(X,Y) :- boss(X,Underling), above(Underling,Y). 

 

 Which is more efficient?  Which is more efficient? 

 above(c,h), friends(c,h).  above(X,Y), friends(X,Y). 

 friends(c,h), above(c,h).  friends(X,Y), above(X,Y). 

 

a 

b c 

d e 

g h 

f 

Probably quicker to check 
first whether they’re friends. 
If they’re not, can skip the 
whole long above(c,h) 
computation, which must 
iterate through descendants 
of c. 

For each boss X, iterate 
through all Y below her and 
check if each Y is her friend.  
(Worse to start by iterating 
through all friendships: if X has 
5 friends Y, we scan all the 
people below her 5 times, 
looking for each friend in turn.) 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- boss(Overling,Y), above(X,Overling).  

 If the query is above(c,e)? 

 

 

 
 

 If the query is above(c,Y)? 

 If the query is above(X,e)? 

 If the query is above(X,Y)? 

a 

b c 

d e 

g h 

f 

1. iterates over descendants of c, looking for e 
2. iterates over ancestors of e, looking for c.    
2. is better: no node has very many ancestors, but some 

have a lot of descendants. 

1. is better.  Why? 

2. is better.  Why? 

Doesn’t matter much.  Why? 

“query 
modes” 
 

+,+ 
 

 
 
 
+,- 
-,+ 
-,- 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- boss(Overling,Y), above(X,Overling).  

 If the query is above(c,e)? 

 

 

 
 

 If the query is above(c,Y)? 

 If the query is above(X,e)? 

 If the query is above(X,Y)? 

a 

b c 

d e 

g h 

f 

1. iterates over descendants of c, looking for e 
2. iterates over ancestors of e, looking for c.    
2. is better: no node has very many ancestors, but some 

have a lot of descendants. 

1. is better.  Why? 

2. is better.  Why? 

Doesn’t matter much.  Why? 

“query 
modes” 
 

+,+ 
 

 
 
 
+,- 
-,+ 
-,- 
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Warning: Actually, 1. has a significant 
advantage in Prolog implementations that 

do “1st-argument indexing.”  

That makes it much faster to find  
a given x’s children (boss(x,Y))  

than a given y’s parents (boss(X,y)). 
So it is much faster to find descendants 

than ancestors. 

If you don’t like that, figure out how to 
tell your Prolog to do 2nd-argument 

indexing.  Or just use subordinate(Y,X) 
instead of boss(X,Y)! 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- above(Underling,Y), boss(X,Underling). 

a 

b c 

d e 

g h 

f 

2. takes forever – literally!!  Infinite recursion. 
 
above(c,h).     % should return Yes 

matches above(X,Y) with X=c, Y=h 

above(Underling, h) 

matches above(X,Y) with X=Underling, Y=h 

          above(Underling, h)  

  … 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- above(Underling,Y), boss(X,Underling). 

a 

b c 

d e 

g h 

f 

2. takes forever – literally!!  Infinite recursion. 
Here’s how: 
above(c,h).     % should return Yes 

matches above(X,X)?  no 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- above(Underling,Y), boss(X,Underling). 

a 

b c 

d e 

g h 

f 

2. takes forever – literally!!  Infinite recursion. 
Here’s how: 
above(c,h).     % should return Yes 

matches above(X,Y) with X=c, Y=h 

above(Underling, h) 

matches above(X,X) with local X = Underling = h 

boss(c, h)    (our current instantiation of boss(X, Underling))    

no match 
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Ordering constraints for speed 
 above(X,X). 

 

 Which is more efficient? 

1. above(X,Y) :- boss(X,Underling), above(Underling,Y). 

2. above(X,Y) :- above(Underling,Y), boss(X,Underling). 

a 

b c 

d e 

g h 

f 

2. takes forever – literally!!  Infinite recursion. 
Here’s how: 
above(c,h).     % should return Yes 

matches above(X,Y) with X=c, Y=h 

above(Underling, h) 

      matches above(X,Y) with X=Underling, Y=h 

      above(Underling, h), 

      … 
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Prolog also allows complex terms 

 What we’ve seen so far is called Datalog: 
“databases in logic.” 

 

 Prolog is “programming in logic.”  It goes a 
little bit further by allowing complex terms, 
including records, lists and trees. 

 

 These complex terms are the source of the 
only hard thing about Prolog, “unification.” 
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Complex terms 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 Several essentially identical ways to find older students: 
 at_jhu(student(IDNum, Name, date(Day,Month,Year))), 

  Year < 1983. 

 at_jhu(student(_, Name, date(_,_,Year))),  
 Year < 1983. 

 at_jhu(Person), 
 Person=student(_,_,Birthday),  
 Birthday=date(_,_,Year),  
 Year < 1983. 

 This query binds Person and Birthday to 
complex structured values, and Year to an int.  Prolog prints them all. 

 

 

example adapted from Ian Davey-Wilson 

usually no need to use = 
but sometimes it’s nice 
to introduce a temporary name 
especially if you’ll use it twice 



This nondeterministic query asks 
whether the page title is a person 
and “Research” appears in some 
heading on the page. 

slide thanks to Peter A. Flach (modified) 

homepage(html(head(title("Peter A. Flach")), 

 body([img([align=right,src="logo.jpg"]), 

  img([align=left,src="peter.jpg"]), 

  h1("Peter Flach's homepage"), 

  h2("Research interests"), 

  ul([li("Learning from structured data"), 

   ..., 

   li(a([href="CV.pdf"],"Full CV"))]), 

  h2("Current activities"), 

  ..., 

  h2("Past activities"), 

  ..., 

  h2("Archives"), 

  ..., 

  hr,address(…) 

     ]) 

         )). 

pagetype(Webpage,researcher):- 

 page_get_head(Webpage,Head), 

 head_get_title(Head, Title), 

 person(Title), 

 page_get_body(Webpage,Body), 

 body_get_heading(Body,Heading), 

 substring("Research",Heading). 

The style on 
the previous 

slide could get 
unmanageable. 

 
You have to 

remember that 
birthday is 

argument #3 
of person, etc. 

One big term  
representing 

an HTML web page.  
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Complex terms 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(                                                            . 

 date_get_year(Date,Year) :- Date=date(_, _, Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

bad style 

Stu  , Bday) :- Stu= student(_, _, Bday) 
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Complex terms 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday),      Bday)             . 

 date_get_year(date(_, _, Year), Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

good style 

whoa, what are the 
variable bindings at 
this point??  
Student&Birthday 
weren’t forced to 
particular values 
by the constraint. 
But were forced 
into a relation … 
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Complex terms 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday),      Bday)             . 

 date_get_year(date(_, _, Year), Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

good style 

student 

? ? ? 

Student 

Birthday 
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 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday),      Bday)             . 

 date_get_year(date(_, _, Year), Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

Complex terms 

good style 

student 

? ? date 

Student 

Birthday 

? ? ? Year 
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 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday),      Bday)             . 

 date_get_year(date(_, _, Year), Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

Complex terms 

good style 

student 

SK 128327 date 

Student 

Birthday 

may 2 1986 Year 
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 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday),      Bday)             . 

 date_get_year(date(_, _, Year), Year). 

 

 So you could write accessors in object-oriented style: 

 student_get_bday(Student,Birthday),  
 date_get_year(Birthday,Year),  
 at_jhu(Student), Year < 1983. 

 Answer:  
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)), 
 Birthday=date(23, aug, 1966), 
 Year=1966. 

Complex terms 

good style 

Fail 
(and backtrack) 
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How does matching happen? 

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Anything).  % variable in a fact 

 

 Query: eats(A, sundae(B,fudge)). 

 Answer: A=rajiv, B=mintchip 
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How does matching happen? 

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Anything).  % variable in a fact 

 

 Query: eats(A, sundae(B,fudge)). 

 What happens when we try to match this against facts? 

 

 

eats 

A sundae 

B fudge 

 
 A=sam 

 sundaedal 
(more precisely, sundae/2  dal/0) 

eats 

sam dal 
No match 
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How does matching happen? 

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Anything).  % variable in a fact 

 

 Query: eats(A, sundae(B,fudge)). 

 What happens when we try to match this against facts? 

 

 

eats 

A sundae 

B fudge 

 
 A=josie 

eats 

josie sundae 
No match 

 
vanilla caramel 

 B=vanilla  fudgecaramel 
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How does matching happen? 

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Anything).  % variable in a fact 

 

 Query: eats(A, sundae(B,fudge)). 

 What happens when we try to match this against facts? 

 

 

eats 

A sundae 

B fudge 

 
 A=rajiv 

eats 

rajiv sundae 
Match! 

 
mintchip fudge 

 B=mintchip  
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Match! 
(B still unknown) 

How does matching happen? 

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Anything).  % variable in a fact 

 

 Query: eats(A, sundae(B,fudge)). 

 What happens when we try to match this against facts? 

 

 

eats 

A sundae 

B fudge 

 
A=robot(’C-3PO’) 

eats 

robot Anything 

C-3PO 

Anything = 
   sundae(B,fudge) 

, icecream(B). 
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How does matching happen?  

 eats(sam, dal). 

 eats(josie, sundae(vanilla, caramel)). 

 eats(rajiv, sundae(mintchip, fudge)). 

 eats(robot(’C-3PO’), Something) :- food(Something). 

 food(dal).     icecream(vanilla). 

 food(fudge).  icecream(chocolate). 

 food(sundae(Base, Topping)) :- icecream(Base), 

          food(Topping). 

 

 Query: eats(robot(A), sundae(B,fudge)). 

 Answer: A=’C-3PO’, B can be any kind of ice cream 
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How does matching happen? 

 Let’s use a “=” constraint to invoke unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: 

foo 

A bar 

B f 

foo 

blah bar 

blah 2 E 

D 

A=blah(blah), B=2, E=f(D) 

This is like unit propagation in DPLL SAT solvers. 
 Unifying 2 nodes “propagates”: it forces their children to be unified too. 

 (As in DPLL, propagation could happen in any order.  Options?) 
 This may bind some unassigned variables to particular nodes.  

 (Like assigning A=0 or A=1 in DPLL.) 
 In case of a conflict, backtrack to prev. decision, undoing all propagation. 
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Two obvious recursive definitions 

 Term (the central data structure in Prolog programs) 

1. Any variable is a term (e.g., X). 

2. Any atom (e.g., foo) or other simple constant (e.g., 7) is a term. 

3. If f is an atom and t1, t2, … tn are terms,  

then f(t1, t2, … tn) is a term. 

 Unification (matching of two terms =) 

1. If  or  is a variable, = succeeds and returns immediately: 

side effect is to bind that variable. 

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse: 

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’. 

n=0 is the case where ,  are atoms or simple constants. 

3. In all other cases, = fails (i.e., conflict). 

 

This lets us build up terms of any finite depth. 
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Two obvious recursive definitions 
More properly, if it’s still unknown (“?”), given bindings so far. 
Consider foo(X,X)=foo(3,7).  Recurse: 

 First we unify X=3.  Now X is no longer unknown. 
 Then try to unify X=7, but since X already bound to 3, 

this tries to unify 3=7 and fails.  X can’t be both 3 and 7. 
(Like the conflict from assigning X=0 and  
then X=1 during DPLL propagation.) 

How about: foo(X1,X2)=foo(3,7), X1=X2?  Or X1=X2, foo(X1,X2)=foo(3,7)? 

 Unification (matching of two terms =) 

1. If  or  is a variable, = succeeds and returns immediately: 

side effect is to bind that variable. 

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse: 

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’. 

n=0 is the case where ,  are atoms or simple constants. 

3. In all other cases, = fails (i.e., conflict). 
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Variable bindings resulting from unification 

 Let’s use the “=” constraint to invoke unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 

D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 
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Variable bindings resulting from unification 

 The “=” constraint invokes unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 
D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 

 Further constraints can’t unify E=7.  Why not? 

7 
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Variable bindings resulting from unification 

 The “=” constraint invokes unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 
D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 

 Further constraints can’t unify E=7.  Why not? 

 They can unify E=f(7).  Then D=7 automatically. 

f

7
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Variable bindings resulting from unification 

 The “=” constraint invokes unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 
D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 

 Further constraints can’t unify E=7.  Why not? 

 They can unify E=f(7).  Then D=7 automatically. 

 Or if they unify D=7, then E=f(7) automatically. 

7

Note: All unification is  
undone upon backtracking! 
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Two obvious recursive definitions 

Even X=f(X) succeeds, with X=the weird circular term f(f(f(…))). 
Our definitions of terms and unification don’t allow circularity. 
So arguably X=f(X) should just fail.  Unsatisfiable constraint! 

But this “occurs check” would be slow, so Prolog skips it. 

 Unification (matching of two terms =) 

1. If  or  is a variable, = succeeds and returns immediately: 

side effect is to bind that variable. 

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse: 

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’. 

n=0 is the case where ,  are atoms or simple constants. 

3. In all other cases, = fails (i.e., conflict). 
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When does Prolog do unification? 
1. To satisfy an “=” constraint. 

2. To satisfy any other constraint .  Prolog tries to unify it with some  that 
is the head of a clause in your program:  

 .        % a fact 

  :- 1, 2, 3. % a rule 

 

 Prolog’s decisions = which clause from your program to pick. 
 Like decision variables in DPLL, this is the nondeterministic choice part. 

 A decision “propagates” in two ways: 

 Unifying nodes forces their children to unify, as we just saw. 
 Like unit propagation in DPLL.  Can fail, forcing backtracking. 

 After unifying = where  is a rule head, we are forced to satisfy 
constraints 1, 2, 3 from the rule’s body (requiring more unification).   
 How to satisfy them may involve further decisions, unlike DPLL. 

 Variable bindings that arise during a unification may affect Prolog’s ability 
to complete the unification, or to do subsequent unifications that are 
needed to satisfy additional constraints (e.g., those from clause body). 
 Bindings are undone upon backtracking, up to the last decision for which 

other options are available. 
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Note: The = constraint isn’t really special 

1. To process an “=” constraint. 

 Actually, this is not really special.  You could implement = if 

it weren’t built in.  Just put this fact in your program: 

 equal(X,X).           

 Now you can write the constraint 

 equal(foo(A,3), foo(2,B)). 

 How would Prolog try to satisfy the constraint? 

 It would try to unify equal(X,X) with equal(foo(A,3), foo(2,B)). 

 This means unifying X with foo(A,3) and X with foo(2,B). 

 So foo(A,3) would indirectly get unified with foo(2,B),  

yielding A=2, B=3. 
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Note: The = constraint isn’t really special 

 Query: equal(foo(A,3), foo(2,B)). 

 Unify against program fact: equal(X,X).  

equal 

? 

equal 

equal 

3 

foo 

A B 
2 

X 

 foo 

3 ? A 

foo 

? 2 
B 

X 

If we wanted to call it = instead of equal, 
we could write ’=’(X,X) as our program 
fact.  Prolog even lets you declare ’=’ as 
infix, making X=X a synonym for ’=’(X,X). 

The unification wouldn’t have 
succeeded if there hadn’t 
been a way to instantiate A,B 
to make the foo terms equal. 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday),  

student_get_bday 

? ? 
Birthday 

Bday 

student_get_bday 

student 

? ? ? 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday),  

student_get_bday 

Birthday 
student 

? ? ? 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

student_get_bday 

Birthday 
student 

? ? ? 

date_get_year 

? 
Year 

Yr 

date_get_year 

date 

? ? ? 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

student_get_bday 

Birthday 
student 

? ? 

date_get_year 

Year 
date 

? ? ? 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

student_get_bday 

Birthday 
student 

? ? 

date_get_year 

Year 
date 

? ? ? 

Note: We don’t really care 
about the black pieces anymore. 
They are just left-over junk 
that helped us satisfy previous 
constraints.  We could even 
garbage-collect them now, since 
no variables point to them. 

The rest of the structure is exactly what we hoped for (earlier slide). 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

at_jhu(Student), 

student_get_bday 

Birthday 
student 

? ? 

date_get_year 

Year 
date 

? ? ? 

at_jhu 

student 

SK 128327 date 

may 2 1986 

at_jhu 



600.325/425 Declarative Methods - J. Eisner 78 

Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

at_jhu(Student), 

student_get_bday 

Birthday 
student 

128327 SK  

date_get_year 

Year 
date 

2  may 1986 

at_jhu 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

at_jhu(Student), Year < 1983. 

student_get_bday 

Birthday 
student 

128327 SK  

date_get_year 

Year 
date 

2  may 1986 

at_jhu 

1983 

< 

fail!  1986 < 1983 

doesn’t match anything 

in database. (Well, okay, 

actually < is built-in.) 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

at_jhu(Student), 

student_get_bday 

Birthday 
student 

? ? 

date_get_year 

Year 
date 

? ? ? 

at_jhu 

student 

SK 128327 date 

may 2 1986 

at_jhu 

backtrack! 
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Now we should really get the birthday example 

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))). 
 at_jhu(student(126547, ‘Blobby B’,  date(15, dec, 1985))). 
 at_jhu(student(456591, ‘Fuzzy W',  date(23, aug, 1966))). 

 
 student_get_bday(student(_, _, Bday), Bday). 

 date_get_year(date(_, _, Yr), Yr). 

Student 

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year), 

at_jhu(Student), 

student_get_bday 

Birthday 
student 

? ? 

date_get_year 

Year 
date 

? ? ? 

at_jhu 

student 

BB 126547 date 

dec 15  1985 

at_jhu 

try another 
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Variable bindings resulting from unification 

 Let’s use the “=” constraint to invoke unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 

D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 
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In memory, it’s not animated.   What happens really? 
Each ? stores a pointer.   
Initially it’s the null pointer, but when ? is first unified with another term, 
change it to point to that term.  (This is what’s undone upon backtracking.) 
Future accesses to the ? don’t see the ?; they transparently follow its pointer. 
(If two ?’s with null pointers are unified, pick one and make it point to the other 
(just as in the Union-Find algorithm).  This may lead to chains of pointers.)   

Variable bindings resulting from unification 

 The “=” constraint invokes unification directly … 

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)). 

 Answer: A=blah(blah), B=2, f(D)=E 

foo 

blah bar 

blah 2 ? 

E 

foo 

? bar 

? f 

? 

A 

B 
D 

foo 

bar 

2 f 

? 

blah 

blah 

A 

B 

D 

E 

Each variable name stores a pointer too 
(initially to a new “?”).   

So, what happens if we now unify A=D? 
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Time to try some programming! 

 Now you know how the Prolog solver works. 

 (It helps to know in advance.)   

 

 Let’s try some programming! 

 

 We’ll try recursion again, but this time with 

complex terms. 
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Family trees (just Datalog here) … 

female(sarah).  
female(rebekah). 
female(hagar_concubine). 
female(milcah). 
female(bashemath). 
female(mahalath). 
female(first_daughter). 
female(second_daughter). 
female(terahs_first_wife). 
female(terahs_second_wife). 
female(harans_wife). 
female(lots_first_wife). 
female(ismaels_wife). 
female(leah). 
female(kemuels_wife). 
female(rachel). 
female(labans_wife).  

male(terah).  male(abraham). 
male(nahor).  male(haran). 
male(isaac).  male(ismael). 
male(uz).  male(kemuel). 
male(bethuel).  male(lot). 
male(iscah).  male(esau). 
male(jacob).  male(massa). 
male(hadad).  male(laban). 
male(reuel).  male(levi3rd). 
male(judah4th).  male(aliah). 
male(elak).  male(moab). 
male(ben-ammi).  
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Family trees (just Datalog here) … 
father(terah, sarah).  
father(terah, abraham).  
father(terah, nahor).  
father(terah, haran).  
father(abraham, isaac).  
father(abraham, ismael).  
father(nahor, uz).  
father(nahor, kemuel).  
father(nahor, bethuel).  
father(haran, milcah).  
father(haran, lot).  
father(haran, iscah).  
father(isaac, esau).  
father(isaac, jacob).  
father(ismael, massa).  
father(ismael, mahalath).  
father(ismael, hadad).  
father(ismael, bashemath). 
father(esau, reuel).  
father(jacob, levi3rd).  
father(jacob, judah4th).  
father(esau, aliah).  
father(esau, elak).  
father(kemuel, aram).  
father(bethuel, laban).  
father(bethuel, rebekah).  
father(lot, first_daughter).  
father(lot, second_daughter).  
father(lot, moab).  
father(lot, ben_ammi).  
father(laban, rachel).  
father(laban, leah).  

mother(terahs_second_wife, sarah). 
mother(terahs_first_wife, abraham). 
mother(terahs_first_wife, nahor). 
mother(terahs_first_wife, haran). 
mother(sarah, isaac). 
mother(hagar_concubine, ismael). 
mother(milcah, uz).  
mother(milcah, kemuel).  
mother(milcah, bethuel). 
mother(harans_wife, milcha). 
mother(harans_wife, lot). 
mother(harans_wife, iscah).  
mother(rebekah, esau).  
mother(rebekah, jacob). 
mother(ismaels_wife, massa). 
mother(ismaels_wife, mahalath). 
mother(ismaels_wife, hadad). 
mother(ismaels_wife, bashemath). 
mother(bethuels_wife, laban). 
mother(bethuels_wife, rebekah). 
mother(lots_first_wife, first_daughter). 
mother(lots_first_wife, second_daughter). 
mother(first_daughter, moab). 
mother(second_daughter, ben_ammi). 
mother(bashemath, reuel).  
mother(leah, levi3rd).  
mother(leah, judas4th).  
mother(mahalath, aliah).  
mother(mahalath, elak).  
mother(lebans_wife, rachel). 
mother(lebans_wife, leah).  
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convention in 
these slides 

Family trees (just Datalog here) … 

 wife(X, Y):- husband(Y, X). 

 married(X, Y):- wife(X, Y).  

 married(X, Y):- husband(X, Y).  

 husband(terah, terahs_first_wife). 
husband(terah, terahs_second_wife). 
husband(abraham, sarah). 
husband(abraham, hagar_concubine).  
husband(nahor, milcah). 
husband(haran, harans_wife). 
husband(isaac, rebekah). 
husband(ismael, ismaels_wife). 
husband(kemuel, kemuels_wife). 
husband(bethuel, bethuels_wife). 
husband(lot, lots_first_wife). 
husband(lot, first_daughter). 
husband(lot, second_daughter). 
husband(esau, bashemath). 
husband(jacob, leah).  
husband(jacob, rachel). 
husband(esau, mahalath). 
husband(laban, labans_wife).  

Does husband(X,Y) mean 
“X is the husband of Y” 

or 
“The husband of X is Y”? 

Conventions vary … pick one and stick to it! 



600.325/425 Declarative Methods - J. Eisner 88 

Family trees (just Datalog here) … 
 % database 

mother(sarah,isaac). 
father(abraham,isaac). 
… 

 parent(X, Y):- mother(X, Y).  
parent(X, Y):- father(X, Y).  

 

 grandmother(X, Y):- mother(X, Z), parent(Z, Y). 
grandfather(X, Y):- father(X, Z), parent(Z, Y). 

 grandparent(X, Y):- grandfather(X, Y).  
grandparent(X, Y):- grandmother(X, Y).  

 

 Can we refactor this code on blackboard to avoid duplication? 
 better handling of male/female 

 currently grandmother and grandfather repeat the same “X…Z…Y” pattern  

 better handling of generations 
 currently great_grandmother and great_grandfather would repeat it again 
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Family trees (just Datalog here) … 

 Refactored database (now specifies parent, not mother/father): 
 parent(sarah, isaac). female(sarah). 

 parent(abraham, isaac). male(abraham). 

 

 Refactored ancestry (recursive, gender-neutral): 
 anc(0,X,X). 

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y). 

 

 Now just need one clause to define each English word: 
 parent(X,Y) :- anc(1,X,Y). 

mother(X,Y) :- parent(X,Y), female(X). 
father(X,Y) :- parent(X,Y), male(X). 

 grandparent(X,Y) :- anc(2,X,Y). 
grandmother(X,Y) :- grandparent(X,Y), female(X). 
grandfather(X,Y) :- grandparent(X,Y), male(X). 

 great_grandparent(X,Y) :- anc(3,X,Y). 
etc. 
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Family trees (just Datalog here) … 

 Refactored ancestry (recursive, gender-neutral): 

 anc(0,X,X). 

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y). 

 

 Wait a minute!  What does anc(2,abraham,Y) do? 

 Recurses on anc(2-1, isaac, Y). 

 Which recurses on anc((2-1)-1, jacob,Y). 

 Which recurses on anc(((2-1)-1)-1, joseph, Y). …  
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Family trees (just Datalog here) … 

 Refactored ancestry (recursive, gender-neutral): 

 anc(0,X,X). 

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y). 

 

 Wait a minute!  What does anc(2,abraham,Y) do? 

 Recurses on anc(2-1, isaac, Y). 

 Which recurses on anc((2-1)-1, jacob,Y). 
 Oops!  (2-1)-1 isn’t zero.  It’s ’-’(’-’(2,1),1)), a compound term. 

 

 

 

 

anc 

Y jacob 

- 1 

- 

2 1 

anc 

X X 0 

doesn’t 
unify 
with 
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Family trees (just Datalog here) … 

 Refactored ancestry (recursive, gender-neutral): 

 anc(0,X,X). 

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y). 

                          N > 0, M is N-1, parent(X,Z), anc(M,Z,Y). 

 

 

 

 

 

 

 

 
 

’is’ does arithmetic for you: 
‘is’(0,1-1). 0 is 1-1. 
’is’(4,2+2). 4 is 2+2. 
‘is’(24, 7*7-5*5) 24 is 7*7-5*5. cuts off the search for 

grandchildren at 2 levels  
(once N <= 0, it’s legal but wasteful 
to continue to recurse in hopes that 
we’ll run into 0 again if we keep 
subtracting 1!) 
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Family trees (just Datalog here) … 

 Refactored ancestry (recursive, gender-neutral): 

 anc(0,X,X). 

 anc(N,X,Y) :- M is N-1, parent(X,Z), anc(M,Z,Y). 
 

 Now, the above works well for queries like 
anc(2,abraham,Y). % query mode: anc(+,+,-) 
anc(2,X,jacob). % query mode: anc(+,-,+) 
anc(2,X,Y). % query mode: anc(+,-,-) 

 But what happens if N is unassigned at query time? 

 anc(N,abraham,jacob). % query mode: anc(-,+,+) 
“Instantiation fault” on constraint “M is N-1.” 

The ’is’ built-in predicate doesn’t permit queries in the mode ’is’(-,-)! 

So can’t compute N-1.  
At least not without using an ECLiPSe delayed constraint: M #= N-1. 

A delayed constraint doesn’t have to be satisfied yet, but we’ll hang onto it for later.  
Anything we learn later about the domains of M and N will be propagated. 

Same problem if we have the constraint N > 0, which only allows ‘>’(+,+). 
Here the ECLiPSe delayed constraint would be N #> 0. 
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Family trees (just Datalog here) … 

 Refactored ancestry (recursive, gender-neutral): 

 anc(0,X,X). 

 anc(N,X,Y) :- M is N-1, M >= 0, parent(X,Z), anc(M,Z,Y). 
 

 Now, the above works well for queries like 
anc(2,abraham,Y). % query mode: anc(+,+,-) 
anc(2,X,jacob). % query mode: anc(+,-,+) 
anc(2,X,Y). % query mode: anc(+,-,-) 

 But what happens if N is unassigned at query time? 

 anc(N,abraham,jacob). % query mode: anc(-,+,+) 

 For this case we wish we had written: 

 anc(0,X,X). 

 anc(N,X,Y) :- parent(X,Z), anc(M,Z,Y), N is M+1. 
 Here we query parent(+,-), which binds Z, 

 and then recursively query anc(-,+,+) again, which binds M, 

 and then query ’is’(-,+), which is a permitted mode for ‘is’.  That works.   

 What a shame that we have to write different programs to handle different 
query modes!  Not very declarative. 
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A few more examples of family relations  
(only the gender-neutral versions are shown) 

 half_sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y. 

 sibling(X,Y) :- mother(Z,X), mother(Z,Y), father(W,X), father(W,Y), X \=Y. 

 Warning: This inequality constraint X \= Y only works right in mode +,+. 

 (It asks whether unification would fail.  So the answer to A \= 4 is “no”,  
since A=4 would succeed!  There is no way for Prolog to represent that A can 
be “anything but 4” – there is no “anything but 4” term.  However, ECLiPSe 
can use domains or delayed constraints to represent this property of A: use a 
delayed constraint A #\= 4.) 

 aunt_or_uncle(X,Y) :- sibling(X,Z), parent(Z,Y).   

 cousin(X,Y):- parent(Z,X), sibling(Z,W), parent(W,Y). 

 deepcousin(X,Y):- sibling(X,Y).    % siblings are 0th cousins 

 deepcousin(X,Y):- parent(Z,X), deepcousin(Z,W), parent(W,Y). 

               % we are Nth cousins if we have parents who are (N-1)st cousins 



600.325/425 Declarative Methods - J. Eisner 96 

Ancestry 

 deepcousin(X,Y):- sibling(X,Y).    % siblings are 0th cousins 

 deepcousin(X,Y):- parent(Z,X), deepcousin(Z,W), parent(W,Y). 

               % we are Nth cousins if we have parents who are (N-1)st cousins 

 

 Suppose we want to count the cousin levels.   

 nth_cousin(N,X,Y) :- …? 

 Should remind you of a previous problem: work it out! 

 What is the base case? 

 Who are my 3rd cousins? 

 For what N are we Nth cousins? 

 Did you ever wonder what “3rd cousin twice removed” means? 

 answer(X,Y) :- nth_cousin(3,X,Z), anc(2,Z,Y). 

 

query mode +,+,- 

query mode -,+,+ 



600.325/425 Declarative Methods - J. Eisner 97 

Lists 

 How do you represent the list 1,2,3,4? 

 Use a structured term: 

cons(1, cons(2, cons(3, cons(4, nil)))) 

 Prolog lets you write this more prettily as [1,2,3,4]  

 

 

 if X=[3,4], then [1,2|X]=[1,2,3,4] 

cons(1,cons(2,X)) cons(3,cons(4,nil)) 

cons(1, cons(2, cons(3, cons(4, nil)))) 
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Lists 

 How do you represent the list 1,2,3,4? 

 Use a structured term: 

cons(1, cons(2, cons(3, cons(4, nil)))) 

 Prolog lets you write this more prettily as [1,2,3,4]  

 

 

 [1,2,3,4]=[1,2|X]    X=[3,4]       by unification 

cons(1,cons(2,X)) cons(3,cons(4,nil)) 

cons(1, cons(2, cons(3, cons(4, nil)))) 
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Lists 

 How do you represent the list 1,2,3,4? 

 Use a structured term: 

cons(1, cons(2, cons(3, cons(4, nil)))) 

 Prolog lets you write this more prettily as [1,2,3,4]  

 

 

 [1,2]      =[1,2|X]      X=[] 

 
cons(1,cons(2,X)) 

cons(1, cons(2, nil)) 

nil 
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Decomposing lists 

 first(X,List) :-  …? 

 

 first(X,List) :- List=[X|Xs]. 

 Traditional variable name:  
“X followed by some more X’s.” 

 first(X, [X|Xs]). 

 Nicer: eliminates the single-use variable List. 

 first(X, [X|_]). 

 Also eliminate the single-use variable Xs. 
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Decomposing lists 

 first(X,   [X|_]). 

 rest(Xs, [_|Xs]). 

 

 Query: first(8, [7,8,9]). 
 Answer: no 

 Query: first(X, [7,8,9]). 
 Answer: X=7 

 Query: first(7, List). 
 Answer: List=[7|Xs]       

(will probably print an internal var name like _G123 instead of Xs) 

 Query: first(7, List), rest([8,9], List). 
 Answer: List=[7,8,9]. 

 Can you draw the structures that get unified to do this? 
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Decomposing lists 

 In practice, no one ever actually defines 
rules for “first” and “rest.”   

 

 Just do the same thing by pattern 
matching: write things like [X|Xs] directly 
in your other rules. 
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List processing: member 

 member(X,Y) should be true if X is any object, Y is a list, 

and X is a member of the list Y. 

 

 member(X, [X|_]).     % same as “first” 

 member(X, [Y|Ys]) :- member(X,Ys). 

 Query: member(giraffe, [beaver, ant, steak(giraffe), fish]). 

 Answer: no     (why?) 

 It’s recursive, but where is the base case??? 
 if (list.empty()) then return “no” % missing in Prolog?? 

else if (x==list.first()) then return “yes” % like 1st Prolog rule 
else return member(x, list.rest()) % like 2nd Prolog rule 

question thanks to Michael J. Ciaraldi and David Finkel 
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List processing: member 

 Query: member(X, [7,8,7]). 

 Answer: X=7 ; 

 X=8 ;  

 X=7   

 Query: member(7, List). 

 Answer: List=[7 | Xs] ; 

 List=[X1, 7| Xs] ; 

 List=[X1, X2, 7 | Xs] ; 

 …   (willing to backtrack forever) 
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List processing: length 
 Query: member(7, List), member(8,List), length(List, 3). 

 Answer: List=[7,8,X] ; 
 List=[7,X,8] ; 
 (now searches forever for next answer  
     – see prev. slide!) 

 Query: length(List, 3), member(7, List), member(8,List). 

 Answer: List=[7, 8, X] ; 
 List=[7, X, 8] ; 
 List=[8, 7, X] ; 
 List=[X, 7, 8] ; 
 List=[8, X, 7] ; 
 List=[X, 8, 7]  
(why in this order?) 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :-     

 length(Xs,M), N is M+1. 

 But this will cause infinite 
recursion for length(List,3). 
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List processing: length 

 Query: member(7, List), member(8,List), length(List, 3). 

 Answer: doesn’t terminate (see previous slide!) 

 Query: length(List, 3), member(7, List), member(8,List). 

 Answer: List=[7, 8, X] ; 

 List=[7, X, 8] ; 

 List=[X, 7, 8] ; 

 List=[8, 7, X] ; 

 List=[8, X, 7] ; 

 List=[X, 8, 7] 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :-     

 length(Xs,M), N is M+1. 

 But this will cause infinite 
recursion for length(List,3). 

 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :- N > 0,   

 length(Xs,M), N is M+1. 

 But this will cause an 
instantiation fault when we 
recurse.  We’ll try to test  
M > 0, but M is still unbound. 
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List processing: length 

 Query: member(7, List), member(8,List), length(List, 3). 

 Answer: doesn’t terminate (see previous slide!) 

 Query: length(List, 3), member(7, List), member(8,List). 

 Answer: List=[7, 8, X] ; 

 List=[7, X, 8] ; 

 List=[X, 7, 8] ; 

 List=[8, 7, X] ; 

 List=[8, X, 7] ; 

 List=[X, 8, 7] 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :-     

 length(Xs,M), N is M+1. 

 But this will cause infinite 
recursion for length(List,3). 

 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :- N > 0,   

 length(Xs,M), N is M+1. 

 But this will cause an 
instantiation fault when we 
recurse.  We’ll try to test 
M > 0, but M is still unbound. 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :- N > 0,  

 M is N-1, length(Xs,M). 

 Works great for length(List,3). 

 Unfortunately, instantiation fault for 
length([a,b,c],N). 

 For that case we should use our first version! 

 Prolog does have hacky 
ways to tell which case 
we’re in.  So we can have 
both definitions … built-in 
version of “length” does. 
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List processing: length 

 Query: member(7, List), member(8,List), length(List, 3). 

 Answer: doesn’t terminate (see previous slide!) 

 Query: length(List, 3), member(7, List), member(8,List). 

 Answer: List=[7, 8, X] ; 

 List=[7, X, 8] ; 

 List=[X, 7, 8] ; 

 List=[8, 7, X] ; 

 List=[8, X, 7] ; 

 List=[X, 8, 7] 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :-     

 length(Xs,M), N is M+1. 

 But this will cause infinite 
recursion for length(List,3). 

 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :- N > 0,   

 length(Xs,M), M is N+1. 

 But this will cause an 
instantiation fault when we 
recurse and try to test M > 
0.  M is still unbound. 

 How do we define length? 

 length([], 0). 

 length([_|Xs],N) :- N > 0,  

 M is N-1, length(Xs,M). 

 Works great for length(List,3). 

 Unfortunately, instantiation fault for 
length([a,b,c],N).   
For that case we should use our first version! 

 Prolog does have hacky 
ways to tell which case 
we’re in.  So we can have 
both definitions … built-in 
version of “length” does. 

     Toto, I don’t think we’re in               .  
declarative programming anymore …           . 

The problem: 
N is M+1 is not “pure Prolog.” 
Neither is N > 0.  
 These constraints can’t be processed by unification 

as you encounter them.  They’re handled by some outside  
mechanism that requires certain variables to be already assigned. 

 Is there a “pure Prolog” alternative (maybe slower, but always works)? 
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Arithmetic in pure Prolog 

 Let’s rethink arithmetic as term unification! 

 I promised we’d divide 6 by 2  

by making Prolog prove that x 2*x = 6. 

 Query: times(2,X,6).  So how do we program times? 

 Represent 0 by z   (for “zero”) 

 Represent 1 by s(z) (for “successor”). 

 Represent 2 by s(s(z)) 

 Represent 3 by s(s(s(z))) 

 …    “Peano integers” 

 So actually our query times(2,X,6) will be written  

times(s(s(z)), X, s(s(s(s(s(s(z))))))). 
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A pure Prolog definition of length 

 length([ ],z). 

 length([_|Xs], s(N)) :- length(Xs,N). 

 

 This is pure Prolog and will work perfectly everywhere.   

 Yeah, it’s a bit annoying to use Peano integers for input/output: 

 Query: length([[a,b],[c,d],[e,f]], N). 

Answer: N=s(s(s(z))) 

 Query: length(List, s(s(s(z)))). 

Answer: List=[A,B,C] 

 But you could use impure Prolog to convert them to “ordinary” 

numbers just at input and output time … 

 

yuck? 
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A pure Prolog definition of length 

 length([ ],z). 

 length([_|Xs], s(N)) :- length(Xs,N). 

 

 This is pure Prolog and will work perfectly everywhere.   

 Converting between Peano integers and ordinary numbers: 

 Query: length([[a,b],[c,d],[e,f]], N), decode(N,D). 

Answer: N=s(s(s(z))), D=3 

 Query: encode(3,N), length(List, N). 

Answer: N=s(s(s(z))), List=[A,B,C] 

 decode(z,0).   decode(s(N),D) :- decode(N,E), D is E+1. 

 encode(0,z).   encode(D,s(N)) :- D > 0, E is D-1, encode(E,N). 
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2+2 in pure Prolog 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 

 The above should make sense declaratively. 

 Don’t worry yet about how the solver works. 

 Just worry about what the program says.   

 It inductively defines addition of natural 
numbers!  The first line is the base case. 
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add(s(s(z)),s(s(z)),Sum ) 

2+2 in pure Prolog 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 

original query 
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? z z add(       ,       ,          ) 

2+2 in pure Prolog 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 

original query 



115 

? z z 

z z ? 

? z z z z 

2+2 in pure Prolog 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 

z 

original query 

1st recursive call 

2nd recursive call 
matches base case 

matches head of rule 

matches head of rule 

add 

note the 
unification 
of variables 

between  
different calls 

Removed outer skins from 1st argument (outside-in), 
wrapping them around 2nd argument (inside-out). 
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2+2 in pure Prolog 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B.   

 add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 

 Query: add(s(s(z)),  s(s(z)),  Sum ).   % 2+2=? 

 Matches head of second clause: A=s(z), B=s(s(z)).  

 So now we have to satisfy body: add(s(z), s(s(s(z))), Sum). 

 Matches head of second clause: A=z, B=s(s(s(z))). 

 So now we have to satisfy body: add(z, s(s(s(s(z)))), Sum). 

 Matches head of first clause: B=s(s(s(s(z)))), B=Sum. 

 So Sum=s(s(s(s(z))))!   Unification has given us our answer. 
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? 

More 2+2: An interesting variant 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,s(Sum)) :- add(A,B,Sum).  % (A+1)+B=(S+1)  

        A+B=S. 

 
z z 

z z ? 

original query 

1st recursive call 

2nd recursive call 
matches base case 

matches head of rule 

matches head of rule 
z z ? z z z 

add 

Removed outer skins from 1st argument (outside-in), 
nested them to form the result (outside-in),  
dropped 2nd argument into the core. 
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More 2+2: An interesting variant 

 First, let’s define a predicate add/3. 

 add(z,B,B).    % 0+B=B. 

 add(s(A),B,s(Sum)) :- add(A,B,Sum).  % (A+1)+B=(S+1)  

        A+B=S. 

 Query: add(s(s(z)),  s(s(z)),  Total ).   % 2+2=? 

 Matches head of second clause: A=s(z), B=s(s(z)), Total=s(Sum). 

 So now we have to satisfy body: add(s(z), s(s(z)), Sum). 

 Matches head of 2nd clause: A=z, B=s(s(z)), Total=s(s(Sum)). 

 So now we have to satisfy body: add(z, s(s(z)))), Sum). 

 Matches head of first clause: B=s(s(z)). 

 So we have built up Total=s(s(Sum))=s(s(s(z))). 
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An amusing query 

 Query: add(z, N, s(N)).    % 0+N = 1+N 

 Answer: you would expect “no” 

 But actually: N  = s(s(s(s(s(s(…))))) 

 Looks good: 0+ = 1+ since both are  !  

 

 Only get this circular term since Prolog skips 

the occurs check while unifying the query with 

add(z,B,B) 
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List processing continued: append 

 You probably already know how to write a non-destructive 

append(Xs,Ys) function in a conventional language, using 

recursion. 

 

 append(Xs,Ys): 

if (Xs.empty()) 

 return Ys 

else  

 subproblem = Xs.rest();   // all but the 1st element 

 subsolution = append(subproblem, Ys) 

 return cons(Xs.first(), subsolution) 
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List processing continued: append 

 You probably already know how to write a non-destructive 

append(Xs,Ys) function in a conventional language, using 

recursion. 

 In more Prologgy notation: 

 append([],Ys): return Ys 

 append([X|Xs],Ys): return [X | append(Xs,Ys)] 
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List processing continued: append 

 You probably already know how to write a non-destructive 

append(Xs,Ys) function in a conventional language, using 

recursion. 

 

 In actual Prolog, the function looks much the same, but once 

you’ve written it, you can also run it backwards! 

 In Prolog there are no return values.  Rather, the return value 

is a third argument: append(Xs,Ys,Result).   

 This is a constraint saying that Result must be the append of 

the other lists. 

 Any of the three arguments may be known (or partly known) 

at runtime.  We look for satisfying assignments to the others. 
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List processing continued: append 

 append(Xs,Ys,Result) should be true if Xs and Ys are 

lists and Result is their concatenation (another list). 

 Query: append([1,2],[3,4],Result) 

 Answer: Result=[1,2,3,4] 

 Try this: 
 append([],Ys,Ys). 

 append([X|Xs],Ys,Result) :- … ? 
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List processing continued: append 

 append(Xs,Ys,Result) should be true if Xs and Ys are 

lists and Result is their concatenation (another list). 

 Query: append([1,2],[3,4],Result) 

 Answer: Result=[1,2,3,4] 

 Try this: 
 append([],Ys,Ys). 

 append([X|Xs],Ys,Result) :- append(Xs,[X|Ys],Result). 

 But wait: what order are the onion skins being 
wrapped in? 

 This is like the first version of 2+2 … 
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List processing continued: append 

 append(Xs,Ys,Result) should be true if Xs and Ys are 

lists and Result is their concatenation (another list). 

 Query: appendrev([1,2],[3,4],Result) 

 Answer: Result=[2,1,3,4] 

 Rename this to appendrev! 
 appendrev([],Ys,Ys). 

 appendrev([X|Xs],Ys,Result) :- appendrev(Xs,[X|Ys],Result). 

 But wait: what order are the onion skins being 
wrapped in? 

 This is like the first version of 2+2 … 
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List processing continued: append 

 Let’s wrap the onion skins like the other 2+2 … 
 

 Query: append([1,2],[3,4],Result) 

 Answer: Result=[1,2,3,4] 

 Here’s the correct version of append: 
 append([],Ys,Ys). 

 append([X|Xs],Ys,[X|Result]) :- append(Xs,Ys,Result). 

A procedural (non-declarative) way to read this rule 

1. our  
inputs 

2. inputs to 
recursive call 

3. output of 
recursive call 

4. construct 
our output 
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List processing continued: append 

 Let’s wrap the onion skins like the other 2+2 … 
 

 Query: append([1,2],[3,4],Result) 

 Answer: Result=[1,2,3,4] 

 Here’s the correct version of append: 
 append([],Ys,Ys). 

 append([X|Xs],Ys,[X|Result]) :- append(Xs,Ys,Result). 

 This version also makes perfect sense declaratively. 

 And we still have a use for the other version, appendrev: 

 reverse(Xs,Ys) :- …? 
 

appendrev(Xs,[],Ys). 
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Arithmetic continued: Subtraction 

 add(s(s(z)), X, s(s(s(s(s(z)))))). 

 add(s(s(s(s(s(z))))), X, s(s(z))). 

 

 Pure Prolog gives you subtraction for free! 

  add(z,B,B).    % 0+B=B. 

  add(s(A),B,s(Sum)) :- add(A,B,Sum).  % (A+1)+B=(S+1)  

        A+B=S. 

  add(z,B,B).    % 0+B=B.  

  add(s(A),B,Sum) :- add(A,s(B),Sum).  % (A+1)+B=S  

        A+(B+1)=S. 
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Multiplication and division 

 How do you define multiplication? 

 (Then division will come for free.) 
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Square roots 

 mult(X, X, s(s(s(s(s(s(s(s(s(z)))))))))). 
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More list processing: Sorting 

 sort(Xs, Ys) 

 

 You can write recursive selection sort, insertion sort, merge 
sort, quick sort … where the list Xs is completely known so 
that you can compare its elements using <. 

 This is basically like writing these procedures in any functional 
language (LISP, OCaml, …).  It’s no more declarative than 
those languages. 

 But how about this more declarative version? 

 sort(Xs, Ys) :- permutation(Xs,Ys), ordered(Ys). 

 How do we write these? 
 ordered is the easy one … 



132 

More list processing: Sorting 

 ordered([]). 

 ordered([X]). 

 ordered([X,Y|Ys]) :- … ? 
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More list processing: Sorting 

 ordered([]). 

 ordered([X]). 

 ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]). 
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More list processing: Sorting 

 Query: deleteone(b, [a,b,c,b], Xs). 

 Answer: Xs=[a,c,b] ; 

              Xs=[a,b,c]  

 

 deleteone(X,[X|Xs],Xs). 

 deleteone(Z,[X|Xs],[X|Ys]) :- 

 deleteone(Z,Xs,Ys). 
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More list processing: Sorting 

 Can we use deleteone(X,List,Rest) to write 
permutation(Xs,Ys)? 

 permutation([], []). 

 permutation(Xs, [Y|PYs]) :-   
 deleteone(Y,Xs,Ys),  
 permutation(Ys,PYs).   

 “Starting with Xs, delete any Y to leave Ys.  Permute 
the Ys to get PYs.  Then glue Y back on the front.” 

 To repeat, sorting by checking all permutations is 
horribly inefficient.  You can also write the usual fast 
sorting algorithms in Prolog. 
 Hmm, but we don’t have random-access arrays … and it’s hard 

to graft those on if you want the ability to modify them …  

 Can use lists rather than arrays if your algorithm is selection 
sort, insertion sort, mergesort … try these yourself in Prolog! 
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Mergesort 
 Query: mergesort([4,3,6,5,9,1,7],S).  

 Answer: S=[1,3,4,5,6,7,9]  

 mergesort([],[]).  

 mergesort([A],[A]).  

 mergesort([A,B|R],S) :-       
 split([A,B|R],L1,L2),   
 mergesort(L1,S1),  mergesort(L2,S2),    
 merge(S1,S2,S).  

 split([],[],[]).  

 split([A],[A],[]).  

 split([A,B|R],[A|Ra],[B|Rb]) :-  split(R,Ra,Rb). 

 merge(A,[],A).  

 merge([],B,B).  

 merge([A|Ra],[B|Rb],[A|M]) :-  A =< B, merge(Ra,[B|Rb],M). 

 merge([A|Ra],[B|Rb],[B|M]) :-  A > B,  merge([A|Ra],Rb,M).  
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A bad SAT solver  
(no short-circuit evaluation or propagation) 

// Suppose formula uses 5 variables: A, B, C, D, E 

 for A  {0, 1} 

 for B  {0, 1} 

 for C  {0, 1} 

 for D  {0, 1} 

 for E  {0, 1} 

        if formula is true 

           immediately return (A,B,C,D,E) 

 return UNSAT 
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A bad SAT solver in Prolog 

 Query (what variable & value ordering are used here?) 

 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true). 

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ … 

 formula(A,B,C,D,E) :-  

                       clause1(A,C,D), clause2(B,C,E), xor(A,E), … 

 % clauses in that formula 

 clause1(true,_,_).  clause1(_,false,_).  clause1(_,_,true). 

 clause2(false,_,).  clause2(_,true,_).  clause2(_,_,true). 

 xor(true,false).  xor(false,true). 
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A bad SAT solver in Prolog 

 Query (what variable & value ordering are used here?) 

 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true). 

 

 

A 

C 
B 

D 
E 

false 

true false true false 

true 

false true false true false true false true 
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The Prolog cut operator, “!” 

 Query 
 bool(A),bool(B),  , bool(C),bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true).   

 … 

 

 A 

C 
B 

D 
E 

false 

false 

false true 

! 
Cuts off part of the search space. 
Once we have managed to satisfy 
bool(A),bool(B) and gotten past !,  
we are committed to our choices so far  
and won’t backtrack to revisit them. 

We still backtrack to find other ways 
of satisfying the subsequent 
constraints bool(C),bool(D),… 
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The Prolog cut operator, “!” 

 Query 
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E),   . 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true).   

 … 

 

 

Cuts off part of the search space. 
Once we have managed to satisfy the 
constraints before ! (all constraints in 
this case), we don’t backtrack.  So we 
return only first satisfying assignment. 

! 

A 

C 
B 

D 
E 

false 

false true false 

true 

false true false true false 

First satisfying assignment 
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The Prolog cut operator, “!” 

 Query 
 bool(A),bool(B),bool(C),  ,bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true).   

 … 

 

 A 

C 
B 

D 
E 

false 

false 

false 

! 
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The Prolog cut operator, “!” 

 Query 
 bool(A),   bool2(B,C),      ,bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true).   

 bool2(X,Y) :- bool(X), bool(Y). 

 

 A 

C 
B 

D 
E 

false 

false 

false 

! 
Same effect, using a subroutine. 
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The Prolog cut operator, “!” 

 Query 
 bool(A),   bool2(B,C),      ,bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true).   

 bool2(X,Y) :- bool(X), bool(Y),    . 

 % equivalent to: bool2(false,false). 

 

 

! 

A 

C 
B 

D 
E 

false 

false 

false 

false 

true 

false 

Now effect of “!”  
is local to bool2.  
bool2 will commit to 
its first solution, 
namely (false,false), 
not backtracking to 
get other solutions. 
But that’s just how 
bool2 works inside.  
Red query doesn’t 
know bool2 contains a 
cut; it backtracks to 
try different A, 
calling bool2 for each. 
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How cuts affect  
backtracking 

call 

fail 

exit 

redo 

subroutine 
for  

clause #2 

main routine 

Normal backtracking 
if we fail  

within clause #2 

But fail immediately 
(return to caller) if we 
backtrack past a cut. 

Can try other 
options here 

before failing 
and returning 

to caller 
Caller can still go back & change 

something & call us again. 
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A bad SAT solver in Prolog 

 Query 
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true). 

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ … 

 formula(A,B,C,D,E) :-  

                       clause1(A,C,D), clause2(B,C,E), xor(A,E), … 

 clause1(true,_,_).   

 clause1(_,false,_).   

 clause1(_,_,true). 

 

Truly inefficient! 
Even checking whether the formula is 
satisfied may take exponential time, 
because we backtrack through all the 
ways to justify that it’s satisfied! 
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A bad SAT solver in Prolog 

 Query 
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E). 

 Program 

 % values available for backtracking search  

 bool(false).  bool(true). 

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ … 

 formula(A,B,C,D,E) :-  

                       clause1(A,C,D), clause2(B,C,E), xor(A,E), … 

 clause1(true,_,_) :- !.   

 clause1(_,false,_) :- !.   

 clause1(_,_,true). 

 

Much better.  Now once we know that 
clause1 is satisfied, we can move on; 
we don’t have to backtrack through all 
the reasons it’s satisfied.   

Are these “green cuts” that don’t change the output of the program? 
Yes, in this case, if we only call clause1 in mode clause1(+,+,+).  
Except that they will eliminate duplicate solutions, too. 
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eats(sam, dal).  eats(josie, samosas). 

eats(sam, curry).  eats(josie, curry). 

eats(rajiv, burgers).  eats(rajiv, dal). 

compatible(Person1, Person2) :- eats(Person1, Food),   

               eats(Person2, Food). 

compatible(Person1, Person2) :- watches(Person1, Movie), 

              watches(Person2, Movie). 

 To whom should we advertise curry? 

 eats(X,curry), compatible(X,Y). 

 X=sam, Y=sam;  X=sam, Y=josie; X=josie, X=sam; X=josie, Y=josie 

 eats(X,curry), !, compatible(X,Y). 

 X=sam, Y=sam;  X=sam, Y=josie 

 eats(X,curry), compatible(X,Y), !. 

 X=sam, Y=sam 

 

Another pedagogical example of cut 
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Using cut to force determinism 

 Query: deleteone(b, [a,b,c,b], Xs). 

 Answer: Xs=[a,c,b] ; 

              Xs=[a,b,c]  

 deleteone(X,[X|Xs],Xs). 

 deleteone(Z,[X|Xs],[X|Ys]) :-  deleteone(Z,Xs,Ys). 
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Using cut to force determinism 

 Query: deleteone(b, [a,b,c,b], Xs). 

 Answer: Xs=[a,c,b] ; 

              Xs=[a,b,c]  

 deletefirst(X,[X|Xs],Xs). 

 deletefirst(Z,[X|Xs],[X|Ys]) :-  deletefirst(Z,Xs,Ys). 

deletefirst 

:- ! . 
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Using cut to override default rules 

with specific cases 
 permissions(superuser, File, [read,write]) :- !. 

 permissions(guest, File, [read]) :- public(File), !. % exception to exception 

 permissions(guest, File, []) :- !. % if this matches, prevent lookup 

 permissions(User, File, PermissionsList) :- lookup(…).    

  % unsafe?  what if looked-up permissions were set wrong? 

 

 can_fly(X) :- penguin(X), !, fail. 

 can_fly(X) :- bird(X). 

 

 progenitor(god, adam) :- !.    % cut is unnecessary but efficient 

 progenitor(god, eve) :- !.       % cut is unnecessary but efficient. 

 progenitor(X,Y) :- parent(X,Y). 



152 

eats(sam, dal).  eats(josie, samosas). 

eats(sam, curry).  eats(josie, curry). 

eats(rajiv, burgers).  eats(rajiv, dal). 

 

 

 

 \+ eats(sam,dal).   % \+ means “not provable” 

 No 

 \+ eats(sam,rutabaga). 

 Yes 

 \+ eats(sam,X). 

 No       % since we can prove that sam does eat some X 

 \+ eats(robot,X). 

 Yes       % since we can’t currently prove that robot eats anything 

Using cut to get negation, sort of 
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Using cut to get negation, sort of 
eats(sam, dal).  eats(josie, samosas). 

eats(sam, curry).  eats(josie, curry). 

eats(rajiv, burgers).  eats(rajiv, dal). 

avoids(Person,Food) :- eats(Person,Food), !, fail. 

avoids(Person,Food). 

 

 avoids(sam,dal).   % “avoids” is implemented in the same way as \+ 

 No 

 avoids(sam,rutabaga). 

 Yes 

 avoids(sam,X). 

 No       % since we can prove that sam does eat some X 

 avoids(robot,X). 

 Yes       % since we can’t currently prove that robot eats anything 

If we can prove “eats,” we commit with ! 
to not being able to prove “avoid” 
Otherwise we can prove “avoid”! 
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More list processing: deleteall 
 Query: deleteall(2, [1,2,3,1,2], Ys). 

 Answer: Ys=[1,3,1] 

 

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

 
 But how about deleteall(Z, [1,2,3,1,2], Ys)?   

 We’d like \= to mean “constrained not to unify.” 
 So Z \= 1 should mean “Z can be any term at all except for 1.” 

 But how do we represent that in memory??   

 Not like unification, which just specializes a variable to refer to a 
more specific term than before.  “Anything but 1” is not a term. 

 So instead, it means “these don’t unify right now” 
 “Z \= 1” is just short for  “\+ (Z=1)” 

Works fine for ground terms :  
2 \= 1, so we don’t delete 1. 



155 

More list processing: deleteall 
 Query: deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] 

 

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

 
 

 We’d like \= to mean “constrained not to unify.” 
 So Z \= 1 should mean “Z can be any term at all except for 1.” 

 But how do we represent that in memory??   

 Not like unification, which just specializes a variable to refer to a 
more specific term than before.  “Anything but 1” is not a term. 

 So instead, it means “these don’t unify right now” 
 “Z \= 1” is just short for  “\+ (Z=1)” 

since only first clause succeeds  
(and then A is ground in recursive call) 
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More list processing: deleteall 
 Query: deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] 

 

 deleteall(X,[X|Xs],Ys) :- ! , deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

 
 

 We’d like \= to mean “constrained not to unify.” 
 So Z \= 1 should mean “Z can be any term at all except for 1.” 

 But how do we represent that in memory??   

 Not like unification, which just specializes a variable to refer to a 
more specific term than before.  “Anything but 1” is not a term. 

 So instead, it means “these don’t unify right now” 
 “Z \= 1” is just short for  “\+ (Z=1)” 

 Equivalent way to make only 1st clause 
succeed (but faster: never tries 2nd) 
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More list processing: deleteall 
 Query: deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] ; 

                  Instantiation fault 
 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z=\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

 
 

 We’d like \= to mean “constrained not to unify.” 
 So Z \= 1 should mean “Z can be any term at all except for 1.” 

 But how do we represent that in memory??   

 Not like unification, which just specializes a variable to refer to a 
more specific term than before.  “Anything but 1” is not a term. 

 So instead, it means “these don’t unify right now” 
 “Z \= 1” is just short for  “\+ (Z=1)” 

since =\= only allowed in mode +,+ 
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More list processing: deleteall 
 Query: member(A,[1,2,3,1,2]), deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] ; 

                  A=2, Ys=[1,3,1] ; etc. 

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

 
 

 We’d like \= to mean “constrained not to unify.” 
 So Z \= 1 should mean “Z can be any term at all except for 1.” 

 But how do we represent that in memory??   

 Not like unification, which just specializes a variable to refer to a more 
specific term than before.  “Anything but 1” is not a term. 

 So instead, it means “these don’t unify right now” 
 “Z \= 1” is just short for  “\+ (Z=1)” 

 

Ensure that A is ground  
before we try calling deleteall 
  (5 answers) 
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More list processing: deleteall 
 Query: deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] ; 

                  A=2, Ys=[1,3,1] ; etc. 

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z#\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

ECLiPSe delayed constraint! 
Will be handled once Z is known. 

This is the “right” approach (fully declarative).  Beyond Prolog. :-lib(ic). 
How many answers?  Still 5 answers? 
Nope!  4 answers: 
A=1, Ys=[2,3,2] ;    match 1st clause (so A=1) 
A=2, Ys=[1,3,1] ;    match 2nd clause (so A#\=1), then 1st (so A=2) 
A=3, Ys=[1,2,1,2] ; match 2nd (so A#\=1), then 2nd (A#\=2), then 1st 
(A=3) 
    If we match 2nd clause once more, then we’ll have to keep matching it 
    for the rest of the list, since we will have constraints A  {1,2,3} that 
    prevent us from taking the 1st clause again 
A=A, Ys=[1,2,3,1,2], plus delayed goals saying A  {1,2,3} 

             match 2nd clause 5 times 
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More list processing: deleteall 
 Query: deleteall(A, [1,2,3,1,2], Ys). 

 Answer: A=1, Ys=[2,3,2] ; 

                  A=2, Ys=[1,3,1] ; etc. 

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys). 

 deleteall(Z,[X|Xs],[X|Ys]) :- Z#\=X, deleteall(Z,Xs,Ys). 

 deleteall(Z,[],[]). 

ECLiPSe delayed constraint! 
Will be handled once Z is known. 

This is the “right” approach (fully declarative).  Beyond Prolog. :-lib(ic). 
 
 
Well, still not perfect.  What happens with query 
 deleteall(1, List, [2,3,2])? 

Unfortunately we get infinite recursion on the first clause.   
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Constraint logic programming … 

 In constraint logic programming, you can include constraints on integers 
like N #= M+1 (rather than N is M+1) and X#\=Z (rather than X \=Z) 
without having to worry about which variables are already instantiated. 

 

 If a constraint can’t be processed yet, it will be handled later, as soon as 
its variables are sufficiently instantiated.  Example: N #= M+1, N #= 5. 

 In fact, do bounds propagation.  Example: N #= M+1, N #> 5. 

 

 But what happens if vars are never sufficiently instantiated? 

 The labeling(Vars) constraint does backtracking search: 

 tries all assignments of Vars consistent with constraints so far 

 finds these assignments using backtracking search interleaved with 
constraint propagation (e.g., bounds consistency) 

 you can control the variable and value ordering  

 only sensible for variables whose values are constrained to a finite 
set, or the integers, etc., since we can’t easily backtrack through all 
the infinitely many terms that might be assigned to a variable. 
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Constraint logic programming 

 We explored at the ECLiPSe prompt or on the 

blackboard: 

 various small examples of CLP, e.g., 

 X #= 2*Y, X=10. 

 X #> 2*Y, X=10. 

 member(X,[1,2,3,4,2]), X #= 2*Y. 

 X #= 2*Y, member(X,[1,2,3,4,2]). 

 uniqmember 

 simplified version of Golomb ruler (from Eclipse website) 
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Constraint logic programming: alldifferent 

 Wrong answer: 

 alldiff([]). 

 alldiff([X|Xs]) :- member(Y,Xs), X #\= Y, alldiff(Xs). 

 

 Right answer (although it lacks the strong propagator 

from ECLiPSe’s standard alldifferent): 

 alldiff([]). 

 … ?    (see homework) 


