
1

Prolog:

Programming in Logic

with some mention of Datalog and

Constraint Logic Programming

2

The original declarative programming language

 Courses in programming languages …

 Prolog is always the declarative language they teach.

 (imperative, functional, object-oriented, declarative)

 Alain Colmeraeur & Philippe Roussel, 1971-1973
 With help from theorem proving folks such as Robert Kowalski

 Original project: Type in French statements & questions

 Computer needed NLP and deductive reasoning

 Efficiency by David Warren, 1977 (compiler, virtual machine)

 Colmerauer & Roussel wrote 20 years later:
“Prolog is so simple that one has the sense that sooner or
later someone had to discover it … that period of our lives
remains one of the happiest in our memories.

 “We have had the pleasure of recalling it for this paper over
almonds accompanied by a dry martini.”

3

Prolog vs. ECLiPSe

 Most common free Prolog implementation is SWI Prolog.

 Very nice, though faster ones are for sale (e.g., SICSTUS Prolog).

 To run Prolog, you can just run ECLiPSe!

 ECLiPSe is a perfectly good Prolog implementation,

although so far we’ve concentrated only on its “extra” features.

4

Prolog vs. ECLiPSe

Constraint

programming

Logic programming

(e.g., Prolog)

Constraint logic

programming

(e.g., ECLiPSe)

Efficient:

Variable ordering

Value ordering

Constraint joining and

propagation

But:

Encoding is annoying

Variables limited to

finite sets, ints, reals

Expressive:

Subroutines

Recursion

Variable domains are

“terms” (including lists

and trees)

But:

Simple, standard

solver: backtracking

and unification

Combo:

Tries to combine best

of both worlds

Later on we’ll see how

5

Prolog as constraint programming

 The above shows an ordinary constraint between two variables:
Person and Food

 Prolog makes you name this constraint.
Here’s a program that defines it:
 eats(sam, dal). eats(josie, samosas).

 eats(sam, curry). eats(josie, curry).

 eats(rajiv, burgers). eats(rajiv, dal). …

 Now it acts like a subroutine! At the Prolog prompt you can type
 eats(Person1, Food1). % constraint over two variables

 eats(Person2, Food2). % constraint over two other variables

(Person, Food)

Person Food

sam dal

sam curry

josie samosas

josie curry

rajiv burgers

rajiv dal

6

Simple constraints in Prolog

 Here’s a program defining the “eats” constraint:
 eats(sam, dal). eats(josie, samosas).

 eats(sam, curry). eats(josie, curry).

 eats(rajiv, burgers). eats(rajiv, dal). …

 Now at the Prolog prompt you can type

 eats(Person1, Food1). % constraint over two variables

 eats(Person2, Food2). % constraint over two other variables

 To say that Person1 and Person2 must eat a common
food, conjoin two constraints with a comma:

 eats(Person1, Food), eats(Person2, Food).

 Prolog gives you possible solutions:

 Person1=sam, Person2=josie, Food=curry

 Person1=josie, Person2=sam, Food=curry …

Actually, it will
start with
solutions where
Person1=sam,
Person2=sam.
How to fix?

7

 eats(sam, dal). eats(josie, samosas).

 eats(sam, curry). eats(josie, curry).

 eats(rajiv, burgers). eats(rajiv, dal). …

 eats(Person1, Food), eats(Person2, Food).

 Person1=sam, Person2=josie, Food=curry

 Person1=josie, Person2=sam, Food=curry …

Your program file (compiled)
Sometimes called the “database”

“Query” that you type interactively

Prolog’s answer

8

Simple constraints in Prolog

 Here’s a program defining the “eats” constraint:
 eats(sam, dal). eats(josie, samosas).

 eats(sam, curry). eats(josie, curry).

 eats(rajiv, burgers). eats(rajiv, dal). …

 Now at the Prolog prompt you can type

 eats(Person1, Food1). % constraint over two variables

 eats(Person2, Food2). % constraint over two other variables

 To say that Person1 and Person2 must eat a common
food, conjoin two constraints with a comma:

 eats(Person1, Food), eats(Person2, Food).

 Prolog gives you possible solutions:

 Person1=sam, Person2=josie, Food=curry

 Person1=josie, Person2=sam, Food=curry …

Actually, it will
start with
solutions where
Person1=sam,
Person2=sam.
How to fix?

9

Queries in Prolog

 eats(Person1, Food1). % constraint over two variables

 eats(Person2, Food2). % constraint over two other variables

 eats(Person1, Food), eats(Person2, Food).

 Prolog gives you possible solutions:

 Person1=sam, Person2=josie, Food=curry

 Person1=josie, Person2=sam, Food=curry …

These things you type at the prompt are called “queries.”
 Prolog answers a query as “Yes” or “No”

according to whether it can find a satisfying assignment.
 If it finds an assignment, it prints the first one before printing “Yes.”
 You can press Enter to accept it, in which case you’re done,

or “;” to reject it, causing Prolog to backtrack and look for another.

[press “;”]

10

Constants vs. Variables

 Here’s a program defining the “eats” constraint:

 eats(sam, dal). eats(josie, samosas).

 eats(sam, curry). eats(josie, curry).

 eats(rajiv, burgers). …

 Now at the Prolog prompt you can type

 eats(Person1, Food1). % constraint over two variables

 eats(Person2, Food2). % constraint over two other variables

 Nothing stops you from putting constants into constraints:

 eats(josie, Food). % what Food does Josie eat? (2 answers)

 eats(Person, curry). % what Person eats curry? (2 answers)

 eats(josie, Food), eats(Person, Food). % who’ll share what with Josie?

 Food=curry, Person=sam

11

Constants vs. Variables

 Nothing stops you from putting constants into constraints:

 eats(josie, Food). % what Food does Josie eat? (2 answers)

 eats(Person, curry). % what Person eats curry? (2 answers)

 eats(josie, Food), eats(Person, Food). % who’ll share what with Josie?

 Food=curry, Person=sam

 Variables start with A,B,…Z or underscore:

 Food, Person, Person2, _G123

 Constant “atoms” start with a,b,…z or appear in single quotes:

 josie, curry, ’CS325’

 Other kinds of constants besides atoms:

 Integers -7, real numbers 3.14159, the empty list []

 eats(josie,curry) is technically a constant structure

12

Rules in Prolog

 Let’s augment our program with a new constraint:

eats(sam, dal). eats(josie, samosas).

eats(sam, curry). eats(josie, curry).

eats(rajiv, burgers). eats(rajiv, dal).

compatible(Person1, Person2) :- eats(Person1, Food),

 eats(Person2, Food).

 “Person1 and Person2 are compatible if there exists some Food that

they both eat.”

 “One way to satisfy the head of this rule is to satisfy the body.”

 You type the query: compatible(rajiv, X). Prolog answers: X=sam.

 Prolog doesn’t report that Person1=rajiv, Person2=sam, Food=dal.

These act like local variables in the rule. It already forgot about them.

means “if” – it’s supposed to look like “”

head body

13

Rules in Prolog

 Let’s augment our program with a new constraint:

eats(sam, dal). eats(josie, samosas).

eats(sam, curry). eats(josie, curry).

eats(rajiv, burgers). eats(rajiv, dal).

compatible(Person1, Person2) :- eats(Person1, Food),

 eats(Person2, Food).

compatible(Person1, Person2) :- watches(Person1, Movie),

 watches(Person2, Movie).

compatible(hal, Person2) :- female(Person2), rich(Person2).

 “One way to satisfy the head of this rule is to satisfy the body.”

why only “one way”? Why not “if and only if”?
allusion to movie Shallow Hal;
shows that constants can appear in rules

14

The Prolog solver

 Prolog’s solver is incredibly simple.

 eats(sam,X).

 Iterates in order through the program’s “eats” clauses.

 First one to match is eats(sam,dal).

so it returns with X=dal.

 If you hit semicolon, it backtracks and continues:

Next match is eats(sam,curry).

so it returns with X=curry.

15

The Prolog solver

 Prolog’s solver is incredibly simple.

 eats(sam,X).

 eats(sam,X), eats(josie,X).

 It satisfies 1st constraint with X=dal. Now X is assigned.

 Now to satisfy 2nd constraint, it must prove eats(josie,dal). No!

 So it backs up to 1st constraint & tries X=curry (sam’s other food).

 Now it has to prove eats(josie,curry). Yes!

 So it is able to return X=curry. What if you now hit semicolon?

 eats(sam,X), eats(Companion, X).

 What happens here?

 What variable ordering is being used? Where did it come from?

 What value ordering is being used? Where did it come from?

16

The Prolog solver

 Prolog’s solver is incredibly simple.

 eats(sam,X).

 eats(sam,X), eats(josie,X).

 eats(sam,X), eats(Companion, X).

 compatible(sam,Companion).

 This time, first clause that matches is
compatible(Person1, Person2) :- eats(Person1, Food),
 eats(Person2, Food).

 “Head” of clause matches with Person1=sam, Person2=Companion.

 So now we need to satisfy “body” of clause:
eats(sam,Food), eats(Companion,Food).
Look familiar?

 We get Companion=rajiv.

17

The Prolog solver

 Prolog’s solver is incredibly simple.

 eats(sam,X).

 eats(sam,X), eats(josie,X).

 eats(sam,X), eats(Companion, X).

 compatible(sam,Companion).

 compatible(sam,Companion), female(Companion).

 compatible(Person1, Person2) :- eats(Person1, Food),
 eats(Person2, Food).

 Our first try at satisfying 1st constraint is Companion=rajiv (as before).

 But then 2nd constraint is female(rajiv). which is presumably false.

 So we backtrack and look for a different satisfying assignment of the
first constraint: Companion=josie.

 Now 2nd constraint is female(josie). which is presumably true.

 We backtracked into this compatible clause (food) & retried it.

 No need yet to move on to the next compatible clause (movies).

18

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

 Each constraint has four ports: call, exit, redo, fail

19

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call exit

 Each constraint has four ports: call, exit, redo, fail

 exit ports feed forward into call ports

call exit

20

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

fail

 Each constraint has four ports: call, exit, redo, fail

 exit ports feed forward into call ports

 fail ports feed back into redo ports

redo fail redo

21

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

 Each constraint has four ports: call, exit, redo, fail

 exit ports feed forward into call ports

 fail ports feed back into redo ports

backtracking at work

22

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

no way to satisfy this constraint given
the assignments so far – so first call fails

How disappointing. Let’s try a happier outcome.

600.325/425 Declarative Methods - J. Eisner 23

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

we satisfy this constraint, making additional
assignments, and move on …

call

600.325/425 Declarative Methods - J. Eisner 24

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

we satisfy this constraint, making additional
assignments, and move on …
but if our assignments cause later constraints to
fail, Prolog may come back and redo this one …

600.325/425 Declarative Methods - J. Eisner 25

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

we satisfy this constraint, making additional
assignments, and move on …
but if our assignments cause later constraints to
fail, Prolog may come back and redo this one …
let’s say we do find a new way to satisfy it.

600.325/425 Declarative Methods - J. Eisner 26

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

If the new way still causes later constraints to
fail, Prolog comes back through the redo port to
try yet again.

600.325/425 Declarative Methods - J. Eisner 27

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

If the new way still causes later constraints to
fail, Prolog comes back through the redo port to
try yet again.
If we’re now out of solutions, we fail too …

600.325/425 Declarative Methods - J. Eisner 28

Backtracking and Beads

 Each Prolog constraint is like a “bead” in a string

of beads:

call

fail

exit

redo

If the new way still causes later constraints to
fail, Prolog comes back through the redo port to
try yet again.
If we’re now out of solutions, we fail too …
sending Prolog back to redo previous constraint.

redo

600.325/425 Declarative Methods - J. Eisner 29

Rules as nested beads

loves(hal, X) :- female(X), rich(X).

loves(hal, X)

female(X) rich(X)
call

fail

exit

redo

slide thanks to David Matuszek (modified)

this is why you can backtrack into loves(hal,X)

600.325/425 Declarative Methods - J. Eisner 30

Alternative rules

loves(hal, X) :- female(X), rich(X).

loves(Child, X) :- parent(X, Child).

loves(hal, X)

female(X) rich(X)
call exit

redo

slide thanks to David Matuszek (modified)

parent(X, hal)
exit

fail redo

after running out of rich women, hal tries his parents

600.325/425 Declarative Methods - J. Eisner 31

Alternative rules

female(parvati).
female(josie).
female(martha).

loves(hal, X)

rich(X)
call exit

redo

slide thanks to David Matuszek (modified)

parent(X, hal)
exit

fail redo

female(parvati)

female(josie)

female(martha)

female(X)

female(X) rich(X)

600.325/425 Declarative Methods - J. Eisner 32

 The various eats(…, …) facts can be regarded as rows in a

database (2-column database in this case).

 Standard relational database operations:

• eats(X,dal). % select

• edible(Object) :- eats(Someone, Object). % project

• parent(X,Y) :- mother(X,Y). % union

parent(X,Y) :- father(X,Y).

• sister_in_law(X,Z) :- sister(X,Y), married(Y,Z). % join

 Why the heck does anyone still use SQL? Beats me.

 Warning: Prolog’s backtracking strategy can be inefficient.

 But we can keep the little language illustrated above (“Datalog”)

and instead compile into optimized query plans, just as for SQL.

Prolog as a database language

600.325/425 Declarative Methods - J. Eisner 33

Recursive queries

 Prolog allows recursive queries (SQL doesn’t).

 Who’s married to their boss?
 boss(X,Y), married(X,Y).

 Who’s married to their boss’s boss?
 boss(X,Y), boss(Y,Z), married(X,Z).

 Who’s married to their boss’s boss’s boss?
 Okay, this is getting silly. Let’s do the general case.

 Who’s married to someone above them?
 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 above(X,Y), married(X,Y).

Base case. For simplicity, it says that any X is “above” herself.
If you don’t like that, replace base case with above(X,Y) :- boss(X,Y).

600.325/425 Declarative Methods - J. Eisner 34

Recursive queries
 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 above(c,h). % should return Yes

 matches above(X,X)? no

a

b c

d e

g h

f

boss(a,b). boss(a,c).

boss(b,d). boss(c,f).

boss(b,e). …

600.325/425 Declarative Methods - J. Eisner 35

 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 above(c,h). % should return Yes

 matches above(X,Y) with X=c, Y=h

 boss(c,Underling),

 matches boss(c,f) with Underling=f

 above(f, h).

 matches above(X,X)? no

Recursive queries

a

b c

d e

g h

f

boss(a,b). boss(a,c).

boss(b,d). boss(c,f).

boss(b,e). …

600.325/425 Declarative Methods - J. Eisner 36

 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 above(c,h). % should return Yes

 matches above(X,Y) with X=c, Y=h

 boss(c,Underling),

 matches boss(c,f) with Underling=f

 above(f, h).

 matches above(X,Y) with X=f, Y=h

(local copies of X,Y distinct from previous call)

 boss(f,Underling),

 matches boss(f,g) with Underling=g

 above(g, h).

 …ultimately fails because g has no underlings …

Recursive queries

a

b c

d e

g h

f

boss(a,b). boss(a,c).

boss(b,d). boss(c,f).

boss(b,e). …

600.325/425 Declarative Methods - J. Eisner 37

 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 above(c,h). % should return Yes

 matches above(X,Y) with X=c, Y=h

 boss(c,Underling),

 matches boss(c,f) with Underling=f

 above(f, h).

 matches above(X,Y) with X=f, Y=h

(local copies of X,Y distinct from previous call)

 boss(f,Underling),

 matches boss(f,h) with Underling=h

 above(h, h).

 matches above(X,X) with X=h

Recursive queries

a

b c

d e

g h

f

boss(a,b). boss(a,c).

boss(b,d). boss(c,f).

boss(b,e). …

600.325/425 Declarative Methods - J. Eisner 38

Ordering constraints for speed
 above(X,X).

 above(X,Y) :- boss(X,Underling), above(Underling,Y).

 Which is more efficient? Which is more efficient?

 above(c,h), friends(c,h). above(X,Y), friends(X,Y).

 friends(c,h), above(c,h). friends(X,Y), above(X,Y).

a

b c

d e

g h

f

Probably quicker to check
first whether they’re friends.
If they’re not, can skip the
whole long above(c,h)
computation, which must
iterate through descendants
of c.

For each boss X, iterate
through all Y below her and
check if each Y is her friend.
(Worse to start by iterating
through all friendships: if X has
5 friends Y, we scan all the
people below her 5 times,
looking for each friend in turn.)

600.325/425 Declarative Methods - J. Eisner 39

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- boss(Overling,Y), above(X,Overling).

 If the query is above(c,e)?

 If the query is above(c,Y)?

 If the query is above(X,e)?

 If the query is above(X,Y)?

a

b c

d e

g h

f

1. iterates over descendants of c, looking for e
2. iterates over ancestors of e, looking for c.
2. is better: no node has very many ancestors, but some

have a lot of descendants.

1. is better. Why?

2. is better. Why?

Doesn’t matter much. Why?

“query
modes”

+,+

+,-
-,+
-,-

600.325/425 Declarative Methods - J. Eisner 40

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- boss(Overling,Y), above(X,Overling).

 If the query is above(c,e)?

 If the query is above(c,Y)?

 If the query is above(X,e)?

 If the query is above(X,Y)?

a

b c

d e

g h

f

1. iterates over descendants of c, looking for e
2. iterates over ancestors of e, looking for c.
2. is better: no node has very many ancestors, but some

have a lot of descendants.

1. is better. Why?

2. is better. Why?

Doesn’t matter much. Why?

“query
modes”

+,+

+,-
-,+
-,-

600.325/425 Declarative Methods - J. Eisner 41

Warning: Actually, 1. has a significant
advantage in Prolog implementations that

do “1st-argument indexing.”

That makes it much faster to find
a given x’s children (boss(x,Y))

than a given y’s parents (boss(X,y)).
So it is much faster to find descendants

than ancestors.

If you don’t like that, figure out how to
tell your Prolog to do 2nd-argument

indexing. Or just use subordinate(Y,X)
instead of boss(X,Y)!

600.325/425 Declarative Methods - J. Eisner 42

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- above(Underling,Y), boss(X,Underling).

a

b c

d e

g h

f

2. takes forever – literally!! Infinite recursion.

above(c,h). % should return Yes

matches above(X,Y) with X=c, Y=h

above(Underling, h)

matches above(X,Y) with X=Underling, Y=h

 above(Underling, h)

 …

600.325/425 Declarative Methods - J. Eisner 43

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- above(Underling,Y), boss(X,Underling).

a

b c

d e

g h

f

2. takes forever – literally!! Infinite recursion.
Here’s how:
above(c,h). % should return Yes

matches above(X,X)? no

600.325/425 Declarative Methods - J. Eisner 44

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- above(Underling,Y), boss(X,Underling).

a

b c

d e

g h

f

2. takes forever – literally!! Infinite recursion.
Here’s how:
above(c,h). % should return Yes

matches above(X,Y) with X=c, Y=h

above(Underling, h)

matches above(X,X) with local X = Underling = h

boss(c, h) (our current instantiation of boss(X, Underling))

no match

600.325/425 Declarative Methods - J. Eisner 45

Ordering constraints for speed
 above(X,X).

 Which is more efficient?

1. above(X,Y) :- boss(X,Underling), above(Underling,Y).

2. above(X,Y) :- above(Underling,Y), boss(X,Underling).

a

b c

d e

g h

f

2. takes forever – literally!! Infinite recursion.
Here’s how:
above(c,h). % should return Yes

matches above(X,Y) with X=c, Y=h

above(Underling, h)

 matches above(X,Y) with X=Underling, Y=h

 above(Underling, h),

 …

600.325/425 Declarative Methods - J. Eisner 46

Prolog also allows complex terms

 What we’ve seen so far is called Datalog:
“databases in logic.”

 Prolog is “programming in logic.” It goes a
little bit further by allowing complex terms,
including records, lists and trees.

 These complex terms are the source of the
only hard thing about Prolog, “unification.”

600.325/425 Declarative Methods - J. Eisner 47

Complex terms

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 Several essentially identical ways to find older students:
 at_jhu(student(IDNum, Name, date(Day,Month,Year))),

 Year < 1983.

 at_jhu(student(_, Name, date(_,_,Year))),
 Year < 1983.

 at_jhu(Person),
 Person=student(_,_,Birthday),
 Birthday=date(_,_,Year),
 Year < 1983.

 This query binds Person and Birthday to
complex structured values, and Year to an int. Prolog prints them all.

example adapted from Ian Davey-Wilson

usually no need to use =
but sometimes it’s nice
to introduce a temporary name
especially if you’ll use it twice

This nondeterministic query asks
whether the page title is a person
and “Research” appears in some
heading on the page.

slide thanks to Peter A. Flach (modified)

homepage(html(head(title("Peter A. Flach")),

 body([img([align=right,src="logo.jpg"]),

 img([align=left,src="peter.jpg"]),

 h1("Peter Flach's homepage"),

 h2("Research interests"),

 ul([li("Learning from structured data"),

 ...,

 li(a([href="CV.pdf"],"Full CV"))]),

 h2("Current activities"),

 ...,

 h2("Past activities"),

 ...,

 h2("Archives"),

 ...,

 hr,address(…)

])

)).

pagetype(Webpage,researcher):-

 page_get_head(Webpage,Head),

 head_get_title(Head, Title),

 person(Title),

 page_get_body(Webpage,Body),

 body_get_heading(Body,Heading),

 substring("Research",Heading).

The style on
the previous

slide could get
unmanageable.

You have to

remember that
birthday is

argument #3
of person, etc.

One big term
representing

an HTML web page.

600.325/425 Declarative Methods - J. Eisner 49

Complex terms

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(.

 date_get_year(Date,Year) :- Date=date(_, _, Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

bad style

Stu , Bday) :- Stu= student(_, _, Bday)

600.325/425 Declarative Methods - J. Eisner 50

Complex terms

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday) .

 date_get_year(date(_, _, Year), Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

good style

whoa, what are the
variable bindings at
this point??
Student&Birthday
weren’t forced to
particular values
by the constraint.
But were forced
into a relation …

600.325/425 Declarative Methods - J. Eisner 51

Complex terms

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday) .

 date_get_year(date(_, _, Year), Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

good style

student

? ? ?

Student

Birthday

600.325/425 Declarative Methods - J. Eisner 52

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday) .

 date_get_year(date(_, _, Year), Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

Complex terms

good style

student

? ? date

Student

Birthday

? ? ? Year

600.325/425 Declarative Methods - J. Eisner 53

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday) .

 date_get_year(date(_, _, Year), Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

Complex terms

good style

student

SK 128327 date

Student

Birthday

may 2 1986 Year

600.325/425 Declarative Methods - J. Eisner 54

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday) .

 date_get_year(date(_, _, Year), Year).

 So you could write accessors in object-oriented style:

 student_get_bday(Student,Birthday),
 date_get_year(Birthday,Year),
 at_jhu(Student), Year < 1983.

 Answer:
 Student=student(456591, ‘Fuzzy W’, date(23, aug, 1966)),
 Birthday=date(23, aug, 1966),
 Year=1966.

Complex terms

good style

Fail
(and backtrack)

600.325/425 Declarative Methods - J. Eisner 55

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Anything). % variable in a fact

 Query: eats(A, sundae(B,fudge)).

 Answer: A=rajiv, B=mintchip

600.325/425 Declarative Methods - J. Eisner 56

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Anything). % variable in a fact

 Query: eats(A, sundae(B,fudge)).

 What happens when we try to match this against facts?

eats

A sundae

B fudge


 A=sam

 sundaedal
(more precisely, sundae/2  dal/0)

eats

sam dal
No match

600.325/425 Declarative Methods - J. Eisner 57

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Anything). % variable in a fact

 Query: eats(A, sundae(B,fudge)).

 What happens when we try to match this against facts?

eats

A sundae

B fudge


 A=josie

eats

josie sundae
No match


vanilla caramel

 B=vanilla  fudgecaramel

600.325/425 Declarative Methods - J. Eisner 58

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Anything). % variable in a fact

 Query: eats(A, sundae(B,fudge)).

 What happens when we try to match this against facts?

eats

A sundae

B fudge


 A=rajiv

eats

rajiv sundae
Match!


mintchip fudge

 B=mintchip 

600.325/425 Declarative Methods - J. Eisner 59

Match!
(B still unknown)

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Anything). % variable in a fact

 Query: eats(A, sundae(B,fudge)).

 What happens when we try to match this against facts?

eats

A sundae

B fudge


A=robot(’C-3PO’)

eats

robot Anything

C-3PO

Anything =
 sundae(B,fudge)

, icecream(B).

600.325/425 Declarative Methods - J. Eisner 60

How does matching happen?

 eats(sam, dal).

 eats(josie, sundae(vanilla, caramel)).

 eats(rajiv, sundae(mintchip, fudge)).

 eats(robot(’C-3PO’), Something) :- food(Something).

 food(dal). icecream(vanilla).

 food(fudge). icecream(chocolate).

 food(sundae(Base, Topping)) :- icecream(Base),

 food(Topping).

 Query: eats(robot(A), sundae(B,fudge)).

 Answer: A=’C-3PO’, B can be any kind of ice cream

600.325/425 Declarative Methods - J. Eisner 61

How does matching happen?

 Let’s use a “=” constraint to invoke unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer:

foo

A bar

B f

foo

blah bar

blah 2 E

D

A=blah(blah), B=2, E=f(D)

This is like unit propagation in DPLL SAT solvers.
 Unifying 2 nodes “propagates”: it forces their children to be unified too.

 (As in DPLL, propagation could happen in any order. Options?)
 This may bind some unassigned variables to particular nodes.

 (Like assigning A=0 or A=1 in DPLL.)
 In case of a conflict, backtrack to prev. decision, undoing all propagation.

600.325/425 Declarative Methods - J. Eisner 62

Two obvious recursive definitions

 Term (the central data structure in Prolog programs)

1. Any variable is a term (e.g., X).

2. Any atom (e.g., foo) or other simple constant (e.g., 7) is a term.

3. If f is an atom and t1, t2, … tn are terms,

then f(t1, t2, … tn) is a term.

 Unification (matching of two terms =)

1. If  or  is a variable, = succeeds and returns immediately:

side effect is to bind that variable.

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse:

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’.

n=0 is the case where ,  are atoms or simple constants.

3. In all other cases, = fails (i.e., conflict).

This lets us build up terms of any finite depth.

600.325/425 Declarative Methods - J. Eisner 63

Two obvious recursive definitions
More properly, if it’s still unknown (“?”), given bindings so far.
Consider foo(X,X)=foo(3,7). Recurse:

 First we unify X=3. Now X is no longer unknown.
 Then try to unify X=7, but since X already bound to 3,

this tries to unify 3=7 and fails. X can’t be both 3 and 7.
(Like the conflict from assigning X=0 and
then X=1 during DPLL propagation.)

How about: foo(X1,X2)=foo(3,7), X1=X2? Or X1=X2, foo(X1,X2)=foo(3,7)?

 Unification (matching of two terms =)

1. If  or  is a variable, = succeeds and returns immediately:

side effect is to bind that variable.

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse:

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’.

n=0 is the case where ,  are atoms or simple constants.

3. In all other cases, = fails (i.e., conflict).

600.325/425 Declarative Methods - J. Eisner 64

Variable bindings resulting from unification

 Let’s use the “=” constraint to invoke unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B

D

foo

bar

2 f

?

blah

blah

A

B

D

E

600.325/425 Declarative Methods - J. Eisner 65

Variable bindings resulting from unification

 The “=” constraint invokes unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B
D

foo

bar

2 f

?

blah

blah

A

B

D

E

 Further constraints can’t unify E=7. Why not?

7

600.325/425 Declarative Methods - J. Eisner 66

Variable bindings resulting from unification

 The “=” constraint invokes unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B
D

foo

bar

2 f

?

blah

blah

A

B

D

E

 Further constraints can’t unify E=7. Why not?

 They can unify E=f(7). Then D=7 automatically.

f

7

600.325/425 Declarative Methods - J. Eisner 67

Variable bindings resulting from unification

 The “=” constraint invokes unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B
D

foo

bar

2 f

?

blah

blah

A

B

D

E

 Further constraints can’t unify E=7. Why not?

 They can unify E=f(7). Then D=7 automatically.

 Or if they unify D=7, then E=f(7) automatically.

7

Note: All unification is
undone upon backtracking!

600.325/425 Declarative Methods - J. Eisner 68

Two obvious recursive definitions

Even X=f(X) succeeds, with X=the weird circular term f(f(f(…))).
Our definitions of terms and unification don’t allow circularity.
So arguably X=f(X) should just fail. Unsatisfiable constraint!

But this “occurs check” would be slow, so Prolog skips it.

 Unification (matching of two terms =)

1. If  or  is a variable, = succeeds and returns immediately:

side effect is to bind that variable.

2. If  is f(t1, t2, … tn) and  is f(t1’, t2’, … tn’), then recurse:

 = succeeds iff we can unify children t1=t1’, t2=t2’, … tn=tn’.

n=0 is the case where ,  are atoms or simple constants.

3. In all other cases, = fails (i.e., conflict).

600.325/425 Declarative Methods - J. Eisner 69

When does Prolog do unification?
1. To satisfy an “=” constraint.

2. To satisfy any other constraint . Prolog tries to unify it with some  that
is the head of a clause in your program:

 . % a fact

  :- 1, 2, 3. % a rule

 Prolog’s decisions = which clause from your program to pick.
 Like decision variables in DPLL, this is the nondeterministic choice part.

 A decision “propagates” in two ways:

 Unifying nodes forces their children to unify, as we just saw.
 Like unit propagation in DPLL. Can fail, forcing backtracking.

 After unifying = where  is a rule head, we are forced to satisfy
constraints 1, 2, 3 from the rule’s body (requiring more unification).
 How to satisfy them may involve further decisions, unlike DPLL.

 Variable bindings that arise during a unification may affect Prolog’s ability
to complete the unification, or to do subsequent unifications that are
needed to satisfy additional constraints (e.g., those from clause body).
 Bindings are undone upon backtracking, up to the last decision for which

other options are available.

600.325/425 Declarative Methods - J. Eisner 70

Note: The = constraint isn’t really special

1. To process an “=” constraint.

 Actually, this is not really special. You could implement = if

it weren’t built in. Just put this fact in your program:

 equal(X,X).

 Now you can write the constraint

 equal(foo(A,3), foo(2,B)).

 How would Prolog try to satisfy the constraint?

 It would try to unify equal(X,X) with equal(foo(A,3), foo(2,B)).

 This means unifying X with foo(A,3) and X with foo(2,B).

 So foo(A,3) would indirectly get unified with foo(2,B),

yielding A=2, B=3.

600.325/425 Declarative Methods - J. Eisner 71

Note: The = constraint isn’t really special

 Query: equal(foo(A,3), foo(2,B)).

 Unify against program fact: equal(X,X).

equal

?

equal

equal

3

foo

A B
2

X

 foo

3 ? A

foo

? 2
B

X

If we wanted to call it = instead of equal,
we could write ’=’(X,X) as our program
fact. Prolog even lets you declare ’=’ as
infix, making X=X a synonym for ’=’(X,X).

The unification wouldn’t have
succeeded if there hadn’t
been a way to instantiate A,B
to make the foo terms equal.

600.325/425 Declarative Methods - J. Eisner 72

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday),

student_get_bday

? ?
Birthday

Bday

student_get_bday

student

? ? ?

600.325/425 Declarative Methods - J. Eisner 73

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday),

student_get_bday

Birthday
student

? ? ?

600.325/425 Declarative Methods - J. Eisner 74

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

student_get_bday

Birthday
student

? ? ?

date_get_year

?
Year

Yr

date_get_year

date

? ? ?

600.325/425 Declarative Methods - J. Eisner 75

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

student_get_bday

Birthday
student

? ?

date_get_year

Year
date

? ? ?

600.325/425 Declarative Methods - J. Eisner 76

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

student_get_bday

Birthday
student

? ?

date_get_year

Year
date

? ? ?

Note: We don’t really care
about the black pieces anymore.
They are just left-over junk
that helped us satisfy previous
constraints. We could even
garbage-collect them now, since
no variables point to them.

The rest of the structure is exactly what we hoped for (earlier slide).

600.325/425 Declarative Methods - J. Eisner 77

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

at_jhu(Student),

student_get_bday

Birthday
student

? ?

date_get_year

Year
date

? ? ?

at_jhu

student

SK 128327 date

may 2 1986

at_jhu

600.325/425 Declarative Methods - J. Eisner 78

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

at_jhu(Student),

student_get_bday

Birthday
student

128327 SK

date_get_year

Year
date

2 may 1986

at_jhu

600.325/425 Declarative Methods - J. Eisner 79

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

at_jhu(Student), Year < 1983.

student_get_bday

Birthday
student

128327 SK

date_get_year

Year
date

2 may 1986

at_jhu

1983

<

fail! 1986 < 1983

doesn’t match anything

in database. (Well, okay,

actually < is built-in.)

600.325/425 Declarative Methods - J. Eisner 80

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

at_jhu(Student),

student_get_bday

Birthday
student

? ?

date_get_year

Year
date

? ? ?

at_jhu

student

SK 128327 date

may 2 1986

at_jhu

backtrack!

600.325/425 Declarative Methods - J. Eisner 81

Now we should really get the birthday example

 at_jhu(student(128327, ‘Spammy K', date(2, may, 1986))).
 at_jhu(student(126547, ‘Blobby B’, date(15, dec, 1985))).
 at_jhu(student(456591, ‘Fuzzy W', date(23, aug, 1966))).

 student_get_bday(student(_, _, Bday), Bday).

 date_get_year(date(_, _, Yr), Yr).

Student

 student_get_bday(Student,Birthday), date_get_year(Birthday,Year),

at_jhu(Student),

student_get_bday

Birthday
student

? ?

date_get_year

Year
date

? ? ?

at_jhu

student

BB 126547 date

dec 15 1985

at_jhu

try another

600.325/425 Declarative Methods - J. Eisner 82

Variable bindings resulting from unification

 Let’s use the “=” constraint to invoke unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B

D

foo

bar

2 f

?

blah

blah

A

B

D

E

600.325/425 Declarative Methods - J. Eisner 83

In memory, it’s not animated.  What happens really?
Each ? stores a pointer.
Initially it’s the null pointer, but when ? is first unified with another term,
change it to point to that term. (This is what’s undone upon backtracking.)
Future accesses to the ? don’t see the ?; they transparently follow its pointer.
(If two ?’s with null pointers are unified, pick one and make it point to the other
(just as in the Union-Find algorithm). This may lead to chains of pointers.)

Variable bindings resulting from unification

 The “=” constraint invokes unification directly …

 Query: foo(A,bar(B,f(D))) = foo(blah(blah), bar(2,E)).

 Answer: A=blah(blah), B=2, f(D)=E

foo

blah bar

blah 2 ?

E

foo

? bar

? f

?

A

B
D

foo

bar

2 f

?

blah

blah

A

B

D

E

Each variable name stores a pointer too
(initially to a new “?”).

So, what happens if we now unify A=D?

600.325/425 Declarative Methods - J. Eisner 84

Time to try some programming!

 Now you know how the Prolog solver works.

 (It helps to know in advance.)

 Let’s try some programming!

 We’ll try recursion again, but this time with

complex terms.

600.325/425 Declarative Methods - J. Eisner 85

Family trees (just Datalog here) …

female(sarah).
female(rebekah).
female(hagar_concubine).
female(milcah).
female(bashemath).
female(mahalath).
female(first_daughter).
female(second_daughter).
female(terahs_first_wife).
female(terahs_second_wife).
female(harans_wife).
female(lots_first_wife).
female(ismaels_wife).
female(leah).
female(kemuels_wife).
female(rachel).
female(labans_wife).

male(terah). male(abraham).
male(nahor). male(haran).
male(isaac). male(ismael).
male(uz). male(kemuel).
male(bethuel). male(lot).
male(iscah). male(esau).
male(jacob). male(massa).
male(hadad). male(laban).
male(reuel). male(levi3rd).
male(judah4th). male(aliah).
male(elak). male(moab).
male(ben-ammi).

600.325/425 Declarative Methods - J. Eisner 86

Family trees (just Datalog here) …
father(terah, sarah).
father(terah, abraham).
father(terah, nahor).
father(terah, haran).
father(abraham, isaac).
father(abraham, ismael).
father(nahor, uz).
father(nahor, kemuel).
father(nahor, bethuel).
father(haran, milcah).
father(haran, lot).
father(haran, iscah).
father(isaac, esau).
father(isaac, jacob).
father(ismael, massa).
father(ismael, mahalath).
father(ismael, hadad).
father(ismael, bashemath).
father(esau, reuel).
father(jacob, levi3rd).
father(jacob, judah4th).
father(esau, aliah).
father(esau, elak).
father(kemuel, aram).
father(bethuel, laban).
father(bethuel, rebekah).
father(lot, first_daughter).
father(lot, second_daughter).
father(lot, moab).
father(lot, ben_ammi).
father(laban, rachel).
father(laban, leah).

mother(terahs_second_wife, sarah).
mother(terahs_first_wife, abraham).
mother(terahs_first_wife, nahor).
mother(terahs_first_wife, haran).
mother(sarah, isaac).
mother(hagar_concubine, ismael).
mother(milcah, uz).
mother(milcah, kemuel).
mother(milcah, bethuel).
mother(harans_wife, milcha).
mother(harans_wife, lot).
mother(harans_wife, iscah).
mother(rebekah, esau).
mother(rebekah, jacob).
mother(ismaels_wife, massa).
mother(ismaels_wife, mahalath).
mother(ismaels_wife, hadad).
mother(ismaels_wife, bashemath).
mother(bethuels_wife, laban).
mother(bethuels_wife, rebekah).
mother(lots_first_wife, first_daughter).
mother(lots_first_wife, second_daughter).
mother(first_daughter, moab).
mother(second_daughter, ben_ammi).
mother(bashemath, reuel).
mother(leah, levi3rd).
mother(leah, judas4th).
mother(mahalath, aliah).
mother(mahalath, elak).
mother(lebans_wife, rachel).
mother(lebans_wife, leah).

600.325/425 Declarative Methods - J. Eisner 87

convention in
these slides

Family trees (just Datalog here) …

 wife(X, Y):- husband(Y, X).

 married(X, Y):- wife(X, Y).

 married(X, Y):- husband(X, Y).

 husband(terah, terahs_first_wife).
husband(terah, terahs_second_wife).
husband(abraham, sarah).
husband(abraham, hagar_concubine).
husband(nahor, milcah).
husband(haran, harans_wife).
husband(isaac, rebekah).
husband(ismael, ismaels_wife).
husband(kemuel, kemuels_wife).
husband(bethuel, bethuels_wife).
husband(lot, lots_first_wife).
husband(lot, first_daughter).
husband(lot, second_daughter).
husband(esau, bashemath).
husband(jacob, leah).
husband(jacob, rachel).
husband(esau, mahalath).
husband(laban, labans_wife).

Does husband(X,Y) mean
“X is the husband of Y”

or
“The husband of X is Y”?

Conventions vary … pick one and stick to it!

600.325/425 Declarative Methods - J. Eisner 88

Family trees (just Datalog here) …
 % database

mother(sarah,isaac).
father(abraham,isaac).
…

 parent(X, Y):- mother(X, Y).
parent(X, Y):- father(X, Y).

 grandmother(X, Y):- mother(X, Z), parent(Z, Y).
grandfather(X, Y):- father(X, Z), parent(Z, Y).

 grandparent(X, Y):- grandfather(X, Y).
grandparent(X, Y):- grandmother(X, Y).

 Can we refactor this code on blackboard to avoid duplication?
 better handling of male/female

 currently grandmother and grandfather repeat the same “X…Z…Y” pattern

 better handling of generations
 currently great_grandmother and great_grandfather would repeat it again

600.325/425 Declarative Methods - J. Eisner 89

Family trees (just Datalog here) …

 Refactored database (now specifies parent, not mother/father):
 parent(sarah, isaac). female(sarah).

 parent(abraham, isaac). male(abraham).

 Refactored ancestry (recursive, gender-neutral):
 anc(0,X,X).

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y).

 Now just need one clause to define each English word:
 parent(X,Y) :- anc(1,X,Y).

mother(X,Y) :- parent(X,Y), female(X).
father(X,Y) :- parent(X,Y), male(X).

 grandparent(X,Y) :- anc(2,X,Y).
grandmother(X,Y) :- grandparent(X,Y), female(X).
grandfather(X,Y) :- grandparent(X,Y), male(X).

 great_grandparent(X,Y) :- anc(3,X,Y).
etc.

600.325/425 Declarative Methods - J. Eisner 90

Family trees (just Datalog here) …

 Refactored ancestry (recursive, gender-neutral):

 anc(0,X,X).

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y).

 Wait a minute! What does anc(2,abraham,Y) do?

 Recurses on anc(2-1, isaac, Y).

 Which recurses on anc((2-1)-1, jacob,Y).

 Which recurses on anc(((2-1)-1)-1, joseph, Y). …

600.325/425 Declarative Methods - J. Eisner 91

Family trees (just Datalog here) …

 Refactored ancestry (recursive, gender-neutral):

 anc(0,X,X).

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y).

 Wait a minute! What does anc(2,abraham,Y) do?

 Recurses on anc(2-1, isaac, Y).

 Which recurses on anc((2-1)-1, jacob,Y).
 Oops! (2-1)-1 isn’t zero. It’s ’-’(’-’(2,1),1)), a compound term.

anc

Y jacob

- 1

-

2 1

anc

X X 0

doesn’t
unify
with

600.325/425 Declarative Methods - J. Eisner 92

Family trees (just Datalog here) …

 Refactored ancestry (recursive, gender-neutral):

 anc(0,X,X).

 anc(N,X,Y) :- parent(X,Z), anc(N-1,Z,Y).

 N > 0, M is N-1, parent(X,Z), anc(M,Z,Y).

’is’ does arithmetic for you:
‘is’(0,1-1). 0 is 1-1.
’is’(4,2+2). 4 is 2+2.
‘is’(24, 7*7-5*5) 24 is 7*7-5*5. cuts off the search for

grandchildren at 2 levels
(once N <= 0, it’s legal but wasteful
to continue to recurse in hopes that
we’ll run into 0 again if we keep
subtracting 1!)

600.325/425 Declarative Methods - J. Eisner 93

Family trees (just Datalog here) …

 Refactored ancestry (recursive, gender-neutral):

 anc(0,X,X).

 anc(N,X,Y) :- M is N-1, parent(X,Z), anc(M,Z,Y).

 Now, the above works well for queries like
anc(2,abraham,Y). % query mode: anc(+,+,-)
anc(2,X,jacob). % query mode: anc(+,-,+)
anc(2,X,Y). % query mode: anc(+,-,-)

 But what happens if N is unassigned at query time?

 anc(N,abraham,jacob). % query mode: anc(-,+,+)
“Instantiation fault” on constraint “M is N-1.”

The ’is’ built-in predicate doesn’t permit queries in the mode ’is’(-,-)!

So can’t compute N-1.
At least not without using an ECLiPSe delayed constraint: M #= N-1.

A delayed constraint doesn’t have to be satisfied yet, but we’ll hang onto it for later.
Anything we learn later about the domains of M and N will be propagated.

Same problem if we have the constraint N > 0, which only allows ‘>’(+,+).
Here the ECLiPSe delayed constraint would be N #> 0.

600.325/425 Declarative Methods - J. Eisner 94

Family trees (just Datalog here) …

 Refactored ancestry (recursive, gender-neutral):

 anc(0,X,X).

 anc(N,X,Y) :- M is N-1, M >= 0, parent(X,Z), anc(M,Z,Y).

 Now, the above works well for queries like
anc(2,abraham,Y). % query mode: anc(+,+,-)
anc(2,X,jacob). % query mode: anc(+,-,+)
anc(2,X,Y). % query mode: anc(+,-,-)

 But what happens if N is unassigned at query time?

 anc(N,abraham,jacob). % query mode: anc(-,+,+)

 For this case we wish we had written:

 anc(0,X,X).

 anc(N,X,Y) :- parent(X,Z), anc(M,Z,Y), N is M+1.
 Here we query parent(+,-), which binds Z,

 and then recursively query anc(-,+,+) again, which binds M,

 and then query ’is’(-,+), which is a permitted mode for ‘is’. That works.

 What a shame that we have to write different programs to handle different
query modes! Not very declarative.

600.325/425 Declarative Methods - J. Eisner 95

A few more examples of family relations
(only the gender-neutral versions are shown)

 half_sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.

 sibling(X,Y) :- mother(Z,X), mother(Z,Y), father(W,X), father(W,Y), X \=Y.

 Warning: This inequality constraint X \= Y only works right in mode +,+.

 (It asks whether unification would fail. So the answer to A \= 4 is “no”,
since A=4 would succeed! There is no way for Prolog to represent that A can
be “anything but 4” – there is no “anything but 4” term. However, ECLiPSe
can use domains or delayed constraints to represent this property of A: use a
delayed constraint A #\= 4.)

 aunt_or_uncle(X,Y) :- sibling(X,Z), parent(Z,Y).

 cousin(X,Y):- parent(Z,X), sibling(Z,W), parent(W,Y).

 deepcousin(X,Y):- sibling(X,Y). % siblings are 0th cousins

 deepcousin(X,Y):- parent(Z,X), deepcousin(Z,W), parent(W,Y).

 % we are Nth cousins if we have parents who are (N-1)st cousins

600.325/425 Declarative Methods - J. Eisner 96

Ancestry

 deepcousin(X,Y):- sibling(X,Y). % siblings are 0th cousins

 deepcousin(X,Y):- parent(Z,X), deepcousin(Z,W), parent(W,Y).

 % we are Nth cousins if we have parents who are (N-1)st cousins

 Suppose we want to count the cousin levels.

 nth_cousin(N,X,Y) :- …?

 Should remind you of a previous problem: work it out!

 What is the base case?

 Who are my 3rd cousins?

 For what N are we Nth cousins?

 Did you ever wonder what “3rd cousin twice removed” means?

 answer(X,Y) :- nth_cousin(3,X,Z), anc(2,Z,Y).

query mode +,+,-

query mode -,+,+

600.325/425 Declarative Methods - J. Eisner 97

Lists

 How do you represent the list 1,2,3,4?

 Use a structured term:

cons(1, cons(2, cons(3, cons(4, nil))))

 Prolog lets you write this more prettily as [1,2,3,4]

 if X=[3,4], then [1,2|X]=[1,2,3,4]

cons(1,cons(2,X)) cons(3,cons(4,nil))

cons(1, cons(2, cons(3, cons(4, nil))))

600.325/425 Declarative Methods - J. Eisner 98

Lists

 How do you represent the list 1,2,3,4?

 Use a structured term:

cons(1, cons(2, cons(3, cons(4, nil))))

 Prolog lets you write this more prettily as [1,2,3,4]

 [1,2,3,4]=[1,2|X]  X=[3,4] by unification

cons(1,cons(2,X)) cons(3,cons(4,nil))

cons(1, cons(2, cons(3, cons(4, nil))))

600.325/425 Declarative Methods - J. Eisner 99

Lists

 How do you represent the list 1,2,3,4?

 Use a structured term:

cons(1, cons(2, cons(3, cons(4, nil))))

 Prolog lets you write this more prettily as [1,2,3,4]

 [1,2] =[1,2|X]  X=[]

cons(1,cons(2,X))

cons(1, cons(2, nil))

nil

600.325/425 Declarative Methods - J. Eisner 100

Decomposing lists

 first(X,List) :- …?

 first(X,List) :- List=[X|Xs].

 Traditional variable name:
“X followed by some more X’s.”

 first(X, [X|Xs]).

 Nicer: eliminates the single-use variable List.

 first(X, [X|_]).

 Also eliminate the single-use variable Xs.

600.325/425 Declarative Methods - J. Eisner 101

Decomposing lists

 first(X, [X|_]).

 rest(Xs, [_|Xs]).

 Query: first(8, [7,8,9]).
 Answer: no

 Query: first(X, [7,8,9]).
 Answer: X=7

 Query: first(7, List).
 Answer: List=[7|Xs]

(will probably print an internal var name like _G123 instead of Xs)

 Query: first(7, List), rest([8,9], List).
 Answer: List=[7,8,9].

 Can you draw the structures that get unified to do this?

600.325/425 Declarative Methods - J. Eisner 102

Decomposing lists

 In practice, no one ever actually defines
rules for “first” and “rest.”

 Just do the same thing by pattern
matching: write things like [X|Xs] directly
in your other rules.

600.325/425 Declarative Methods - J. Eisner 103

List processing: member

 member(X,Y) should be true if X is any object, Y is a list,

and X is a member of the list Y.

 member(X, [X|_]). % same as “first”

 member(X, [Y|Ys]) :- member(X,Ys).

 Query: member(giraffe, [beaver, ant, steak(giraffe), fish]).

 Answer: no (why?)

 It’s recursive, but where is the base case???
 if (list.empty()) then return “no” % missing in Prolog??

else if (x==list.first()) then return “yes” % like 1st Prolog rule
else return member(x, list.rest()) % like 2nd Prolog rule

question thanks to Michael J. Ciaraldi and David Finkel

600.325/425 Declarative Methods - J. Eisner 104

List processing: member

 Query: member(X, [7,8,7]).

 Answer: X=7 ;

 X=8 ;

 X=7

 Query: member(7, List).

 Answer: List=[7 | Xs] ;

 List=[X1, 7| Xs] ;

 List=[X1, X2, 7 | Xs] ;

 … (willing to backtrack forever)

600.325/425 Declarative Methods - J. Eisner 105

List processing: length
 Query: member(7, List), member(8,List), length(List, 3).

 Answer: List=[7,8,X] ;
 List=[7,X,8] ;
 (now searches forever for next answer
 – see prev. slide!)

 Query: length(List, 3), member(7, List), member(8,List).

 Answer: List=[7, 8, X] ;
 List=[7, X, 8] ;
 List=[8, 7, X] ;
 List=[X, 7, 8] ;
 List=[8, X, 7] ;
 List=[X, 8, 7]
(why in this order?)

 How do we define length?

 length([], 0).

 length([_|Xs],N) :-

 length(Xs,M), N is M+1.

 But this will cause infinite
recursion for length(List,3).

600.325/425 Declarative Methods - J. Eisner 106

List processing: length

 Query: member(7, List), member(8,List), length(List, 3).

 Answer: doesn’t terminate (see previous slide!)

 Query: length(List, 3), member(7, List), member(8,List).

 Answer: List=[7, 8, X] ;

 List=[7, X, 8] ;

 List=[X, 7, 8] ;

 List=[8, 7, X] ;

 List=[8, X, 7] ;

 List=[X, 8, 7]

 How do we define length?

 length([], 0).

 length([_|Xs],N) :-

 length(Xs,M), N is M+1.

 But this will cause infinite
recursion for length(List,3).

 How do we define length?

 length([], 0).

 length([_|Xs],N) :- N > 0,

 length(Xs,M), N is M+1.

 But this will cause an
instantiation fault when we
recurse. We’ll try to test
M > 0, but M is still unbound.

600.325/425 Declarative Methods - J. Eisner 107

List processing: length

 Query: member(7, List), member(8,List), length(List, 3).

 Answer: doesn’t terminate (see previous slide!)

 Query: length(List, 3), member(7, List), member(8,List).

 Answer: List=[7, 8, X] ;

 List=[7, X, 8] ;

 List=[X, 7, 8] ;

 List=[8, 7, X] ;

 List=[8, X, 7] ;

 List=[X, 8, 7]

 How do we define length?

 length([], 0).

 length([_|Xs],N) :-

 length(Xs,M), N is M+1.

 But this will cause infinite
recursion for length(List,3).

 How do we define length?

 length([], 0).

 length([_|Xs],N) :- N > 0,

 length(Xs,M), N is M+1.

 But this will cause an
instantiation fault when we
recurse. We’ll try to test
M > 0, but M is still unbound.

 How do we define length?

 length([], 0).

 length([_|Xs],N) :- N > 0,

 M is N-1, length(Xs,M).

 Works great for length(List,3).

 Unfortunately, instantiation fault for
length([a,b,c],N).

 For that case we should use our first version!

 Prolog does have hacky
ways to tell which case
we’re in. So we can have
both definitions … built-in
version of “length” does.

600.325/425 Declarative Methods - J. Eisner 108

List processing: length

 Query: member(7, List), member(8,List), length(List, 3).

 Answer: doesn’t terminate (see previous slide!)

 Query: length(List, 3), member(7, List), member(8,List).

 Answer: List=[7, 8, X] ;

 List=[7, X, 8] ;

 List=[X, 7, 8] ;

 List=[8, 7, X] ;

 List=[8, X, 7] ;

 List=[X, 8, 7]

 How do we define length?

 length([], 0).

 length([_|Xs],N) :-

 length(Xs,M), N is M+1.

 But this will cause infinite
recursion for length(List,3).

 How do we define length?

 length([], 0).

 length([_|Xs],N) :- N > 0,

 length(Xs,M), M is N+1.

 But this will cause an
instantiation fault when we
recurse and try to test M >
0. M is still unbound.

 How do we define length?

 length([], 0).

 length([_|Xs],N) :- N > 0,

 M is N-1, length(Xs,M).

 Works great for length(List,3).

 Unfortunately, instantiation fault for
length([a,b,c],N).
For that case we should use our first version!

 Prolog does have hacky
ways to tell which case
we’re in. So we can have
both definitions … built-in
version of “length” does.

 Toto, I don’t think we’re in .
declarative programming anymore … .

The problem:
N is M+1 is not “pure Prolog.”
Neither is N > 0.
 These constraints can’t be processed by unification

as you encounter them. They’re handled by some outside
mechanism that requires certain variables to be already assigned.

 Is there a “pure Prolog” alternative (maybe slower, but always works)?

600.325/425 Declarative Methods - J. Eisner 109

Arithmetic in pure Prolog

 Let’s rethink arithmetic as term unification!

 I promised we’d divide 6 by 2

by making Prolog prove that x 2*x = 6.

 Query: times(2,X,6). So how do we program times?

 Represent 0 by z (for “zero”)

 Represent 1 by s(z) (for “successor”).

 Represent 2 by s(s(z))

 Represent 3 by s(s(s(z)))

 … “Peano integers”

 So actually our query times(2,X,6) will be written

times(s(s(z)), X, s(s(s(s(s(s(z))))))).

600.325/425 Declarative Methods - J. Eisner 110

A pure Prolog definition of length

 length([],z).

 length([_|Xs], s(N)) :- length(Xs,N).

 This is pure Prolog and will work perfectly everywhere.

 Yeah, it’s a bit annoying to use Peano integers for input/output:

 Query: length([[a,b],[c,d],[e,f]], N).

Answer: N=s(s(s(z)))

 Query: length(List, s(s(s(z)))).

Answer: List=[A,B,C]

 But you could use impure Prolog to convert them to “ordinary”

numbers just at input and output time …

yuck?

600.325/425 Declarative Methods - J. Eisner 111

A pure Prolog definition of length

 length([],z).

 length([_|Xs], s(N)) :- length(Xs,N).

 This is pure Prolog and will work perfectly everywhere.

 Converting between Peano integers and ordinary numbers:

 Query: length([[a,b],[c,d],[e,f]], N), decode(N,D).

Answer: N=s(s(s(z))), D=3

 Query: encode(3,N), length(List, N).

Answer: N=s(s(s(z))), List=[A,B,C]

 decode(z,0). decode(s(N),D) :- decode(N,E), D is E+1.

 encode(0,z). encode(D,s(N)) :- D > 0, E is D-1, encode(E,N).

112

2+2 in pure Prolog

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

 The above should make sense declaratively.

 Don’t worry yet about how the solver works.

 Just worry about what the program says.

 It inductively defines addition of natural
numbers! The first line is the base case.

113

add(s(s(z)),s(s(z)),Sum)

2+2 in pure Prolog

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

original query

114

? z z add(, ,)

2+2 in pure Prolog

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

original query

115

? z z

z z ?

? z z z z

2+2 in pure Prolog

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

z

original query

1st recursive call

2nd recursive call
matches base case

matches head of rule

matches head of rule

add

note the
unification
of variables

between
different calls

Removed outer skins from 1st argument (outside-in),
wrapping them around 2nd argument (inside-out).

116

2+2 in pure Prolog

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

 Query: add(s(s(z)), s(s(z)), Sum). % 2+2=?

 Matches head of second clause: A=s(z), B=s(s(z)).

 So now we have to satisfy body: add(s(z), s(s(s(z))), Sum).

 Matches head of second clause: A=z, B=s(s(s(z))).

 So now we have to satisfy body: add(z, s(s(s(s(z)))), Sum).

 Matches head of first clause: B=s(s(s(s(z)))), B=Sum.

 So Sum=s(s(s(s(z))))! Unification has given us our answer.

600.325/425 Declarative Methods - J. Eisner 117

?

More 2+2: An interesting variant

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,s(Sum)) :- add(A,B,Sum). % (A+1)+B=(S+1)

  A+B=S.

z z

z z ?

original query

1st recursive call

2nd recursive call
matches base case

matches head of rule

matches head of rule
z z ? z z z

add

Removed outer skins from 1st argument (outside-in),
nested them to form the result (outside-in),
dropped 2nd argument into the core.

118

More 2+2: An interesting variant

 First, let’s define a predicate add/3.

 add(z,B,B). % 0+B=B.

 add(s(A),B,s(Sum)) :- add(A,B,Sum). % (A+1)+B=(S+1)

  A+B=S.

 Query: add(s(s(z)), s(s(z)), Total). % 2+2=?

 Matches head of second clause: A=s(z), B=s(s(z)), Total=s(Sum).

 So now we have to satisfy body: add(s(z), s(s(z)), Sum).

 Matches head of 2nd clause: A=z, B=s(s(z)), Total=s(s(Sum)).

 So now we have to satisfy body: add(z, s(s(z)))), Sum).

 Matches head of first clause: B=s(s(z)).

 So we have built up Total=s(s(Sum))=s(s(s(z))).

119

An amusing query

 Query: add(z, N, s(N)). % 0+N = 1+N

 Answer: you would expect “no”

 But actually: N = s(s(s(s(s(s(…)))))

 Looks good: 0+ = 1+ since both are  !

 Only get this circular term since Prolog skips

the occurs check while unifying the query with

add(z,B,B)

120

List processing continued: append

 You probably already know how to write a non-destructive

append(Xs,Ys) function in a conventional language, using

recursion.

 append(Xs,Ys):

if (Xs.empty())

 return Ys

else

 subproblem = Xs.rest(); // all but the 1st element

 subsolution = append(subproblem, Ys)

 return cons(Xs.first(), subsolution)

121

List processing continued: append

 You probably already know how to write a non-destructive

append(Xs,Ys) function in a conventional language, using

recursion.

 In more Prologgy notation:

 append([],Ys): return Ys

 append([X|Xs],Ys): return [X | append(Xs,Ys)]

122

List processing continued: append

 You probably already know how to write a non-destructive

append(Xs,Ys) function in a conventional language, using

recursion.

 In actual Prolog, the function looks much the same, but once

you’ve written it, you can also run it backwards!

 In Prolog there are no return values. Rather, the return value

is a third argument: append(Xs,Ys,Result).

 This is a constraint saying that Result must be the append of

the other lists.

 Any of the three arguments may be known (or partly known)

at runtime. We look for satisfying assignments to the others.

123

List processing continued: append

 append(Xs,Ys,Result) should be true if Xs and Ys are

lists and Result is their concatenation (another list).

 Query: append([1,2],[3,4],Result)

 Answer: Result=[1,2,3,4]

 Try this:
 append([],Ys,Ys).

 append([X|Xs],Ys,Result) :- … ?

124

List processing continued: append

 append(Xs,Ys,Result) should be true if Xs and Ys are

lists and Result is their concatenation (another list).

 Query: append([1,2],[3,4],Result)

 Answer: Result=[1,2,3,4]

 Try this:
 append([],Ys,Ys).

 append([X|Xs],Ys,Result) :- append(Xs,[X|Ys],Result).

 But wait: what order are the onion skins being
wrapped in?

 This is like the first version of 2+2 …

125

List processing continued: append

 append(Xs,Ys,Result) should be true if Xs and Ys are

lists and Result is their concatenation (another list).

 Query: appendrev([1,2],[3,4],Result)

 Answer: Result=[2,1,3,4]

 Rename this to appendrev!
 appendrev([],Ys,Ys).

 appendrev([X|Xs],Ys,Result) :- appendrev(Xs,[X|Ys],Result).

 But wait: what order are the onion skins being
wrapped in?

 This is like the first version of 2+2 …

126

List processing continued: append

 Let’s wrap the onion skins like the other 2+2 …

 Query: append([1,2],[3,4],Result)

 Answer: Result=[1,2,3,4]

 Here’s the correct version of append:
 append([],Ys,Ys).

 append([X|Xs],Ys,[X|Result]) :- append(Xs,Ys,Result).

A procedural (non-declarative) way to read this rule

1. our
inputs

2. inputs to
recursive call

3. output of
recursive call

4. construct
our output

127

List processing continued: append

 Let’s wrap the onion skins like the other 2+2 …

 Query: append([1,2],[3,4],Result)

 Answer: Result=[1,2,3,4]

 Here’s the correct version of append:
 append([],Ys,Ys).

 append([X|Xs],Ys,[X|Result]) :- append(Xs,Ys,Result).

 This version also makes perfect sense declaratively.

 And we still have a use for the other version, appendrev:

 reverse(Xs,Ys) :- …?

appendrev(Xs,[],Ys).

128

Arithmetic continued: Subtraction

 add(s(s(z)), X, s(s(s(s(s(z)))))).

 add(s(s(s(s(s(z))))), X, s(s(z))).

 Pure Prolog gives you subtraction for free!

 add(z,B,B). % 0+B=B.

 add(s(A),B,s(Sum)) :- add(A,B,Sum). % (A+1)+B=(S+1)

  A+B=S.

 add(z,B,B). % 0+B=B.

 add(s(A),B,Sum) :- add(A,s(B),Sum). % (A+1)+B=S

  A+(B+1)=S.

129

Multiplication and division

 How do you define multiplication?

 (Then division will come for free.)

130

Square roots

 mult(X, X, s(s(s(s(s(s(s(s(s(z)))))))))).

131

More list processing: Sorting

 sort(Xs, Ys)

 You can write recursive selection sort, insertion sort, merge
sort, quick sort … where the list Xs is completely known so
that you can compare its elements using <.

 This is basically like writing these procedures in any functional
language (LISP, OCaml, …). It’s no more declarative than
those languages.

 But how about this more declarative version?

 sort(Xs, Ys) :- permutation(Xs,Ys), ordered(Ys).

 How do we write these?
 ordered is the easy one …

132

More list processing: Sorting

 ordered([]).

 ordered([X]).

 ordered([X,Y|Ys]) :- … ?

133

More list processing: Sorting

 ordered([]).

 ordered([X]).

 ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

134

More list processing: Sorting

 Query: deleteone(b, [a,b,c,b], Xs).

 Answer: Xs=[a,c,b] ;

 Xs=[a,b,c]

 deleteone(X,[X|Xs],Xs).

 deleteone(Z,[X|Xs],[X|Ys]) :-

 deleteone(Z,Xs,Ys).

135

More list processing: Sorting

 Can we use deleteone(X,List,Rest) to write
permutation(Xs,Ys)?

 permutation([], []).

 permutation(Xs, [Y|PYs]) :-
 deleteone(Y,Xs,Ys),
 permutation(Ys,PYs).

 “Starting with Xs, delete any Y to leave Ys. Permute
the Ys to get PYs. Then glue Y back on the front.”

 To repeat, sorting by checking all permutations is
horribly inefficient. You can also write the usual fast
sorting algorithms in Prolog.
 Hmm, but we don’t have random-access arrays … and it’s hard

to graft those on if you want the ability to modify them …

 Can use lists rather than arrays if your algorithm is selection
sort, insertion sort, mergesort … try these yourself in Prolog!

136

Mergesort
 Query: mergesort([4,3,6,5,9,1,7],S).

 Answer: S=[1,3,4,5,6,7,9]

 mergesort([],[]).

 mergesort([A],[A]).

 mergesort([A,B|R],S) :-
 split([A,B|R],L1,L2),
 mergesort(L1,S1), mergesort(L2,S2),
 merge(S1,S2,S).

 split([],[],[]).

 split([A],[A],[]).

 split([A,B|R],[A|Ra],[B|Rb]) :- split(R,Ra,Rb).

 merge(A,[],A).

 merge([],B,B).

 merge([A|Ra],[B|Rb],[A|M]) :- A =< B, merge(Ra,[B|Rb],M).

 merge([A|Ra],[B|Rb],[B|M]) :- A > B, merge([A|Ra],Rb,M).

137

A bad SAT solver
(no short-circuit evaluation or propagation)

// Suppose formula uses 5 variables: A, B, C, D, E

 for A  {0, 1}

 for B  {0, 1}

 for C  {0, 1}

 for D  {0, 1}

 for E  {0, 1}

 if formula is true

 immediately return (A,B,C,D,E)

 return UNSAT

138

A bad SAT solver in Prolog

 Query (what variable & value ordering are used here?)

 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ …

 formula(A,B,C,D,E) :-

 clause1(A,C,D), clause2(B,C,E), xor(A,E), …

 % clauses in that formula

 clause1(true,_,_). clause1(_,false,_). clause1(_,_,true).

 clause2(false,_,). clause2(_,true,_). clause2(_,_,true).

 xor(true,false). xor(false,true).

139

A bad SAT solver in Prolog

 Query (what variable & value ordering are used here?)

 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

A

C
B

D
E

false

true false true false

true

false true false true false true false true

140

The Prolog cut operator, “!”

 Query
 bool(A),bool(B), , bool(C),bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 …

 A

C
B

D
E

false

false

false true

!
Cuts off part of the search space.
Once we have managed to satisfy
bool(A),bool(B) and gotten past !,
we are committed to our choices so far
and won’t backtrack to revisit them.

We still backtrack to find other ways
of satisfying the subsequent
constraints bool(C),bool(D),…

141

The Prolog cut operator, “!”

 Query
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E), .

 Program

 % values available for backtracking search

 bool(false). bool(true).

 …

Cuts off part of the search space.
Once we have managed to satisfy the
constraints before ! (all constraints in
this case), we don’t backtrack. So we
return only first satisfying assignment.

!

A

C
B

D
E

false

false true false

true

false true false true false

First satisfying assignment

142

The Prolog cut operator, “!”

 Query
 bool(A),bool(B),bool(C), ,bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 …

 A

C
B

D
E

false

false

false

!

143

The Prolog cut operator, “!”

 Query
 bool(A), bool2(B,C), ,bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 bool2(X,Y) :- bool(X), bool(Y).

 A

C
B

D
E

false

false

false

!
Same effect, using a subroutine.

144

The Prolog cut operator, “!”

 Query
 bool(A), bool2(B,C), ,bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 bool2(X,Y) :- bool(X), bool(Y), .

 % equivalent to: bool2(false,false).

!

A

C
B

D
E

false

false

false

false

true

false

Now effect of “!”
is local to bool2.
bool2 will commit to
its first solution,
namely (false,false),
not backtracking to
get other solutions.
But that’s just how
bool2 works inside.
Red query doesn’t
know bool2 contains a
cut; it backtracks to
try different A,
calling bool2 for each.

145

How cuts affect
backtracking

call

fail

exit

redo

subroutine
for

clause #2

main routine

Normal backtracking
if we fail

within clause #2

But fail immediately
(return to caller) if we
backtrack past a cut.

Can try other
options here

before failing
and returning

to caller
Caller can still go back & change

something & call us again.

146

A bad SAT solver in Prolog

 Query
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ …

 formula(A,B,C,D,E) :-

 clause1(A,C,D), clause2(B,C,E), xor(A,E), …

 clause1(true,_,_).

 clause1(_,false,_).

 clause1(_,_,true).

Truly inefficient!
Even checking whether the formula is
satisfied may take exponential time,
because we backtrack through all the
ways to justify that it’s satisfied!

600.325/425 Declarative Methods - J. Eisner 147

A bad SAT solver in Prolog

 Query
 bool(A),bool(B),bool(C),bool(D),bool(E),formula(A,B,C,D,E).

 Program

 % values available for backtracking search

 bool(false). bool(true).

 % formula (A v ~C v D) ^ (~B v C v E) ^ (A xor E) ^ …

 formula(A,B,C,D,E) :-

 clause1(A,C,D), clause2(B,C,E), xor(A,E), …

 clause1(true,_,_) :- !.

 clause1(_,false,_) :- !.

 clause1(_,_,true).

Much better. Now once we know that
clause1 is satisfied, we can move on;
we don’t have to backtrack through all
the reasons it’s satisfied.

Are these “green cuts” that don’t change the output of the program?
Yes, in this case, if we only call clause1 in mode clause1(+,+,+).
Except that they will eliminate duplicate solutions, too.

148

eats(sam, dal). eats(josie, samosas).

eats(sam, curry). eats(josie, curry).

eats(rajiv, burgers). eats(rajiv, dal).

compatible(Person1, Person2) :- eats(Person1, Food),

 eats(Person2, Food).

compatible(Person1, Person2) :- watches(Person1, Movie),

 watches(Person2, Movie).

 To whom should we advertise curry?

 eats(X,curry), compatible(X,Y).

 X=sam, Y=sam; X=sam, Y=josie; X=josie, X=sam; X=josie, Y=josie

 eats(X,curry), !, compatible(X,Y).

 X=sam, Y=sam; X=sam, Y=josie

 eats(X,curry), compatible(X,Y), !.

 X=sam, Y=sam

Another pedagogical example of cut

149

Using cut to force determinism

 Query: deleteone(b, [a,b,c,b], Xs).

 Answer: Xs=[a,c,b] ;

 Xs=[a,b,c]

 deleteone(X,[X|Xs],Xs).

 deleteone(Z,[X|Xs],[X|Ys]) :- deleteone(Z,Xs,Ys).

150

Using cut to force determinism

 Query: deleteone(b, [a,b,c,b], Xs).

 Answer: Xs=[a,c,b] ;

 Xs=[a,b,c]

 deletefirst(X,[X|Xs],Xs).

 deletefirst(Z,[X|Xs],[X|Ys]) :- deletefirst(Z,Xs,Ys).

deletefirst

:- ! .

151

Using cut to override default rules

with specific cases
 permissions(superuser, File, [read,write]) :- !.

 permissions(guest, File, [read]) :- public(File), !. % exception to exception

 permissions(guest, File, []) :- !. % if this matches, prevent lookup

 permissions(User, File, PermissionsList) :- lookup(…).

 % unsafe? what if looked-up permissions were set wrong?

 can_fly(X) :- penguin(X), !, fail.

 can_fly(X) :- bird(X).

 progenitor(god, adam) :- !. % cut is unnecessary but efficient

 progenitor(god, eve) :- !. % cut is unnecessary but efficient.

 progenitor(X,Y) :- parent(X,Y).

152

eats(sam, dal). eats(josie, samosas).

eats(sam, curry). eats(josie, curry).

eats(rajiv, burgers). eats(rajiv, dal).

 \+ eats(sam,dal). % \+ means “not provable”

 No

 \+ eats(sam,rutabaga).

 Yes

 \+ eats(sam,X).

 No % since we can prove that sam does eat some X

 \+ eats(robot,X).

 Yes % since we can’t currently prove that robot eats anything

Using cut to get negation, sort of

153

Using cut to get negation, sort of
eats(sam, dal). eats(josie, samosas).

eats(sam, curry). eats(josie, curry).

eats(rajiv, burgers). eats(rajiv, dal).

avoids(Person,Food) :- eats(Person,Food), !, fail.

avoids(Person,Food).

 avoids(sam,dal). % “avoids” is implemented in the same way as \+

 No

 avoids(sam,rutabaga).

 Yes

 avoids(sam,X).

 No % since we can prove that sam does eat some X

 avoids(robot,X).

 Yes % since we can’t currently prove that robot eats anything

If we can prove “eats,” we commit with !
to not being able to prove “avoid”
Otherwise we can prove “avoid”!

154

More list processing: deleteall
 Query: deleteall(2, [1,2,3,1,2], Ys).

 Answer: Ys=[1,3,1]

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

 But how about deleteall(Z, [1,2,3,1,2], Ys)?

 We’d like \= to mean “constrained not to unify.”
 So Z \= 1 should mean “Z can be any term at all except for 1.”

 But how do we represent that in memory??

 Not like unification, which just specializes a variable to refer to a
more specific term than before. “Anything but 1” is not a term.

 So instead, it means “these don’t unify right now”
 “Z \= 1” is just short for “\+ (Z=1)”

Works fine for ground terms :
2 \= 1, so we don’t delete 1.

155

More list processing: deleteall
 Query: deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2]

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

 We’d like \= to mean “constrained not to unify.”
 So Z \= 1 should mean “Z can be any term at all except for 1.”

 But how do we represent that in memory??

 Not like unification, which just specializes a variable to refer to a
more specific term than before. “Anything but 1” is not a term.

 So instead, it means “these don’t unify right now”
 “Z \= 1” is just short for “\+ (Z=1)”

since only first clause succeeds
(and then A is ground in recursive call)

156

More list processing: deleteall
 Query: deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2]

 deleteall(X,[X|Xs],Ys) :- ! , deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

 We’d like \= to mean “constrained not to unify.”
 So Z \= 1 should mean “Z can be any term at all except for 1.”

 But how do we represent that in memory??

 Not like unification, which just specializes a variable to refer to a
more specific term than before. “Anything but 1” is not a term.

 So instead, it means “these don’t unify right now”
 “Z \= 1” is just short for “\+ (Z=1)”

 Equivalent way to make only 1st clause
succeed (but faster: never tries 2nd)

157

More list processing: deleteall
 Query: deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2] ;

 Instantiation fault
 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z=\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

 We’d like \= to mean “constrained not to unify.”
 So Z \= 1 should mean “Z can be any term at all except for 1.”

 But how do we represent that in memory??

 Not like unification, which just specializes a variable to refer to a
more specific term than before. “Anything but 1” is not a term.

 So instead, it means “these don’t unify right now”
 “Z \= 1” is just short for “\+ (Z=1)”

since =\= only allowed in mode +,+

158

More list processing: deleteall
 Query: member(A,[1,2,3,1,2]), deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2] ;

 A=2, Ys=[1,3,1] ; etc.

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

 We’d like \= to mean “constrained not to unify.”
 So Z \= 1 should mean “Z can be any term at all except for 1.”

 But how do we represent that in memory??

 Not like unification, which just specializes a variable to refer to a more
specific term than before. “Anything but 1” is not a term.

 So instead, it means “these don’t unify right now”
 “Z \= 1” is just short for “\+ (Z=1)”

Ensure that A is ground
before we try calling deleteall
 (5 answers)

600.325/425 Declarative Methods - J. Eisner 159

More list processing: deleteall
 Query: deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2] ;

 A=2, Ys=[1,3,1] ; etc.

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z#\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

ECLiPSe delayed constraint!
Will be handled once Z is known.

This is the “right” approach (fully declarative). Beyond Prolog. :-lib(ic).
How many answers? Still 5 answers?
Nope! 4 answers:
A=1, Ys=[2,3,2] ; match 1st clause (so A=1)
A=2, Ys=[1,3,1] ; match 2nd clause (so A#\=1), then 1st (so A=2)
A=3, Ys=[1,2,1,2] ; match 2nd (so A#\=1), then 2nd (A#\=2), then 1st
(A=3)
 If we match 2nd clause once more, then we’ll have to keep matching it
 for the rest of the list, since we will have constraints A  {1,2,3} that
 prevent us from taking the 1st clause again
A=A, Ys=[1,2,3,1,2], plus delayed goals saying A  {1,2,3}

 match 2nd clause 5 times

160

More list processing: deleteall
 Query: deleteall(A, [1,2,3,1,2], Ys).

 Answer: A=1, Ys=[2,3,2] ;

 A=2, Ys=[1,3,1] ; etc.

 deleteall(X,[X|Xs],Ys) :- deleteall(X,Xs,Ys).

 deleteall(Z,[X|Xs],[X|Ys]) :- Z#\=X, deleteall(Z,Xs,Ys).

 deleteall(Z,[],[]).

ECLiPSe delayed constraint!
Will be handled once Z is known.

This is the “right” approach (fully declarative). Beyond Prolog. :-lib(ic).

Well, still not perfect. What happens with query
 deleteall(1, List, [2,3,2])?

Unfortunately we get infinite recursion on the first clause.

161

Constraint logic programming …

 In constraint logic programming, you can include constraints on integers
like N #= M+1 (rather than N is M+1) and X#\=Z (rather than X \=Z)
without having to worry about which variables are already instantiated.

 If a constraint can’t be processed yet, it will be handled later, as soon as
its variables are sufficiently instantiated. Example: N #= M+1, N #= 5.

 In fact, do bounds propagation. Example: N #= M+1, N #> 5.

 But what happens if vars are never sufficiently instantiated?

 The labeling(Vars) constraint does backtracking search:

 tries all assignments of Vars consistent with constraints so far

 finds these assignments using backtracking search interleaved with
constraint propagation (e.g., bounds consistency)

 you can control the variable and value ordering

 only sensible for variables whose values are constrained to a finite
set, or the integers, etc., since we can’t easily backtrack through all
the infinitely many terms that might be assigned to a variable.

162

Constraint logic programming

 We explored at the ECLiPSe prompt or on the

blackboard:

 various small examples of CLP, e.g.,

 X #= 2*Y, X=10.

 X #> 2*Y, X=10.

 member(X,[1,2,3,4,2]), X #= 2*Y.

 X #= 2*Y, member(X,[1,2,3,4,2]).

 uniqmember

 simplified version of Golomb ruler (from Eclipse website)

163

Constraint logic programming: alldifferent

 Wrong answer:

 alldiff([]).

 alldiff([X|Xs]) :- member(Y,Xs), X #\= Y, alldiff(Xs).

 Right answer (although it lacks the strong propagator

from ECLiPSe’s standard alldifferent):

 alldiff([]).

 … ? (see homework)

